-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
34 lines (30 loc) · 1.05 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from flask import Flask,render_template,request
from tensorflow.keras.utils import load_img
from keras_preprocessing.image import img_to_array
from keras.models import load_model
import numpy as np
# from gevent.pywsgi import WSGIServer
app = Flask(__name__)
Model_Path= 'models/pneu_cnn_model.h5'
model = load_model(Model_Path)
@app.route('/',methods=['GET'])
def hello_world():
return render_template('index.html')
@app.route('/',methods=['POST','GET'])
def predict():
imagefile= request.files["imagefile"]
image_path ='./static/' + imagefile.filename
imagefile.save(image_path)
img=load_img(image_path,target_size=(500,500),color_mode='grayscale')
x=img_to_array(img)
x=x/255
x=np.expand_dims(x, axis=0)
classes=model.predict(x)
result1=classes[0][0]
result2='Negative'
if result1>=0.5:
result2='Positive'
classification ='%s (%.2f%%)' %(result2,result1*100)
return render_template('index.html',prediction=classification,imagePath=image_path)
if __name__ == '__main__':
app.run(port=5000,debug=True)