-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
250 lines (224 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import logging
import os
import pickle
import sys
from datetime import datetime
from math import pi
from subprocess import call
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import BatchSampler
from torch.utils.data import DataLoader
from config import dataset_paths, weights_path, loggers_loc, project_path
from datasets.data import Data, Sampler
from losses.angular_loss import AngularGazeLoss
from losses.vector_loss import VectorDifferenceLoss
from models.additive_fusion import AdditiveFusionNet
from models.aggregation_only import ConcatenatedFusionNet
from models.baseline import BaselineNetwork
from models.mmtm_fusion import MMTMFusionNet
def print_trainable_parameters(model):
'''
prints number of trainable parameters of a pytorch model
:param model: pytorch model
:return: void
'''
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
print('Trainable Parameters: %.3fM' % parameters)
def print_cuda_details():
'''
prints cuda details
:return: void
'''
print('__Python VERSION:', sys.version)
print('__pyTorch VERSION:', torch.__version__)
print('__CUDA VERSION')
# call(["nvcc", "--version"]) does not work
print('__CUDNN VERSION:', torch.backends.cudnn.version())
print('__Number CUDA Devices:', torch.cuda.device_count())
print('__Devices')
call(["nvidia-smi", "--format=csv", "--query-gpu=index,name,driver_version,memory.total,memory.used,memory.free"])
print('Active CUDA Device: GPU', torch.cuda.current_device())
print('Available devices ', torch.cuda.device_count())
print('Current cuda device ', torch.cuda.current_device())
def train_network(network_name, dataset, epochs, frame_window, batch_size, split_nature='cross-person',
two_phase=False, checkpoint=None):
"""
function to train the neural network with given parameters
:param network_name: name of the network as defined
:param dataset: name of the dataset as defined
:param epochs: number of epochs to train
:param frame_window: by default considered as 1 as we are taking one frame at a time
:param batch_size: batch size
:param split_nature: cross-person (person-independent)/random (only for EYEDIAP)
:param two_phase: whether to use a two-phase training or not (CURRENTLY NOT BEING USED)
:param checkpoint: pth file of the checkpoint to load the model with, if any
:return: void
"""
resolution = 120
# Define Logger
logging.basicConfig(
filename=loggers_loc + '/training_' + dataset + '_' + network_name + '_' + split_nature + '.log',
format='%(asctime)s %(levelname)s : %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logging.info('Starting training of ' + network_name + ' on ' + dataset + ' for ' + split_nature + ' split')
learning_rate = 0.0001
# Load Model
if network_name == 'baseline': # RGB Baseline Model
model = BaselineNetwork(in_channels=3)
learning_rate = 0.00001
elif network_name == 'additive-fusion': # F-AF (Additive Fusion Model)
model = AdditiveFusionNet()
learning_rate = 0.00005
elif network_name == 'concatenated-fusion': # F-AO (FLAME-Aggregation only) model
model = ConcatenatedFusionNet()
learning_rate = 0.0001
elif network_name == 'mmtm-fusion': # Original FLAME
model = MMTMFusionNet(input_size=120)
learning_rate = 0.0001
# Load Data (Add the dataset path in config.py if adding new)
try:
path = dataset_paths[dataset]
except KeyError:
logging.error('Path to dataset ' + dataset + ' not defined. Please define the same in config.py file')
sys.exit()
# Define Sampler and dataset
train_batch_sampler = BatchSampler(Sampler(dataset, path, batch_size, frame_window, 'train', split_nature),
batch_size, drop_last=True)
cv_batch_sampler = BatchSampler(Sampler(dataset, path, 3, frame_window, 'cv', split_nature),
16, drop_last=True)
train_data_set = Data(dataset, path, frame_window, 'train', resolution=resolution, split_nature=split_nature,
crop='eye')
cv_data_set = Data(dataset, path, frame_window, 'cv', resolution=resolution, split_nature=split_nature, crop='eye')
logging.info('Samplers and Dataset created for ' + dataset)
# Change to GPU if available
if torch.cuda.is_available():
model = model.cuda()
# Make the model run on Multiple GPUs if available
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model, device_ids=range(0, torch.cuda.device_count()))
logging.info(network_name + ' model defined for training')
logging.info('Two Phase Training - ' + str(two_phase))
# Define Data Loaders
train_loader = DataLoader(train_data_set, batch_sampler=train_batch_sampler)
cv_loader = DataLoader(cv_data_set, batch_sampler=cv_batch_sampler)
logging.info('DataLoaders initialized')
# Define Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
logging.info('Optimizer initialized')
# Define Scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[85, 120, 175], gamma=0.5)
logging.info('Scheduler initialized')
# Load Checkpoint (if any)
if checkpoint is not None:
logging.info('Previous checkpoint found. Loading...')
if torch.cuda.is_available():
cp = torch.load(checkpoint, map_location=torch.device('cuda'))
else:
cp = torch.load(checkpoint, map_location=torch.device('cpu'))
logging.info('Checkpoint details -')
logging.info('Scheduler state - ' + str(cp['scheduler_state_dict']))
model.load_state_dict(cp['model_state_dict'])
optimizer.load_state_dict(cp['optimizer_state_dict'])
scheduler.load_state_dict(cp['scheduler_state_dict'])
epoch_start = cp['epoch'] + 1
checkpoint_dir = os.path.split(checkpoint)[0]
else:
logging.info('No previous checkpoint available. Training initialized from scratch.')
epoch_start = 0
now = datetime.now()
dt_string = now.strftime("%d_%m_%Y_%H_%M_%S")
foldername = network_name + '_' + dataset + '_' + dt_string
checkpoint_dir = os.path.join(weights_path, foldername)
# Loading Max Min metadata for normalization
with open(os.path.join(project_path, 'metadata', 'data_statistics', 'data_vals_max_min_' + dataset + '.pkl'),
'rb') as fm:
data_stats = pickle.load(fm)
fm.close()
# Define Loss Functions
eval_criterion = AngularGazeLoss(data_stats)
criterion = VectorDifferenceLoss(data_stats)
if torch.cuda.is_available():
criterion = criterion.cuda()
eval_criterion = eval_criterion.cuda()
adj = None
# Training Loop
for epoch in range(epoch_start, epochs):
count = 0
total_train_loss = 0
model.train()
# Freeze Backbone weights for two-phase training
if epoch >= 179 and two_phase: # Two-phase training is not a paer of actual methodogies produced as they give sub-optimal results
for parameters in model.backbone.parameters():
parameters.requires_grad = False
for step, data in enumerate(train_loader):
# Forward Propagation
loss, out, y = forward_propagation(model, data, adj, 'train', data_stats, network_name, criterion)
total_train_loss += loss.item()
count += 1
# Backward Propagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
mean_train_loss = float(total_train_loss) / count
count = 0
total_cv_loss = 0
model.eval()
for step, data in enumerate(cv_loader):
loss, out, y = forward_propagation(model, data, adj, 'eval', data_stats, network_name, eval_criterion)
total_cv_loss += (loss * 180 / pi)
count += 1
mean_cv_loss = float(total_cv_loss) / count
# Create log
logging.info('Completed epoch ' + str(epoch) + ':' + ' training loss = ' + str(
mean_train_loss) + ' validation loss = ' + str(mean_cv_loss))
# Save Checkpoint
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
filepath = os.path.join(checkpoint_dir, 'checkpoint_' + str(epoch + 1) + '.pth')
# Save checkpoint
torch.save(
{'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(), 'loss_train': mean_train_loss, 'loss_cv': mean_cv_loss},
filepath)
scheduler.step()
def forward_propagation(model, data, adj, task, data_stats, network_name, criterion=None):
"""
Forward propagation method that executes forward pass of the given data and model
:param model: pytorch model
:param data: data batch
:param adj: adjacency matrix (if GCN is used)
:param task: train/eval
:param data_stats: metadata for the dataset like maximum, minimum values for normalization
:param network_name: name of the network as defined
:param criterion: loss function
:return: loss tensor, prediction tensor and ground truth tensor for that particular batch
"""
rgb = data["frames"].float()
fl = (data["fl"].float() - data_stats['fl']['min']) / (data_stats['fl']['max'] - data_stats['fl']['min'])
heatmap = data["heatmaps"].float()
hp = (data["hp"].float() - data_stats['hp']['min']) / (data_stats['hp']['max'] - data_stats['hp']['min'])
y = (data["gaze"].float() - data_stats['gaze']['min']) / (data_stats['gaze']['max'] - data_stats['gaze']['min'])
# Convert to GPU if CUDA is available
if torch.cuda.is_available():
rgb = rgb.cuda(non_blocking=True)
fl = fl.cuda(non_blocking=True)
heatmap = heatmap.cuda(non_blocking=True)
hp = hp.cuda(non_blocking=True)
y = y.cuda(non_blocking=True)
adj = adj.cuda(non_blocking=True) if adj is not None else None
# Forward Propagation
if model.__class__.__name__ == 'DenseFusionNet' or model.__class__.__name__ == 'DenseBaselineNet':
out = model(rgb, fl, hp, adj)
elif network_name == 'heatmap-baseline':
out = model(heatmap, rgb, hp)
elif network_name == 'early-fusion':
out = model(torch.cat((rgb, heatmap), 1), heatmap, hp)
else:
out = model(rgb, heatmap, hp)
# Loss Calculation
loss = criterion(y, out)
if task == 'eval': # for optimization of memory
loss = loss.item()
return loss, out, y