-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfetch_glacier_metadata.py
2615 lines (2120 loc) · 146 KB
/
fetch_glacier_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os, sys, time, warnings
from glob import glob
import argparse
import numpy as np
import pandas as pd
import geopandas as gpd
import scipy
import sklearn.neighbors
import cupy as cp
import cupyx.scipy.ndimage
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import xarray, rioxarray, rasterio
import xrspatial.curvature
import xrspatial.aspect
from rioxarray import merge
import networkx
from astropy.convolution import Gaussian2DKernel, convolve, convolve_fft
import pykdtree.kdtree
from sklearn.impute import SimpleImputer
import oggm
from oggm import utils
from shapely.geometry import Point, Polygon, LineString, MultiLineString, box
from shapely.errors import GEOSException
from pyproj import Proj, Transformer, Geod
import utm
from create_rgi_mosaic_tanxedem import fetch_dem, create_glacier_tile_dem_mosaic
from utils_metadata import *
from imputation_policies import smb_elev_functs, smb_elev_functs_hugo, velocity_median_rgi
import misc as misc
"""
This program generates glacier metadata inside the glacier geometry.
Input: glacier name (RGIId)
Output: pandas dataframe with features calculated for each generated point.
# todo: it may be wise to return also other stuff, e.g. some geometries
# todo: also, i may decide not to interpolate farinotti and millan ith for speedup
"""
def populate_glacier_with_metadata(glacier_name,
config = None,
rgi_products=None,
rgi=None,
version=None,
coastlines_dataframe = None,
link_rgi6_rg7_dataframe = None,
seed=None,
verbose=True,
):
print(f"******* FETCHING FEATURES FOR GLACIER {glacier_name} *******") if verbose else None
# Feature dataframe
points_df = pd.DataFrame(columns=['lons', 'lats', 'nunataks'])
tin=time.time()
# unpack config
n_points_regression_single = config.n_points_regression_single
n_points_regression_cluster = config.n_points_regression_cluster
k_max_geoms = config.kdtree_dist_max_k_geometries
graph_max_layer_depth = config.graph_max_layer_depth
rgi = int(rgi)
# Get rgi products
oggm_rgi_glaciers, rgi_graph, mbdf_rgi = rgi_products
if version == '62':
name_column_id = 'RGIId'
name_column_name = 'Name'
elif version == '70G':
name_column_id = 'rgi_id'
name_column_name = 'glac_name'
try:
# Get glacier dataset
gl_df = oggm_rgi_glaciers.loc[oggm_rgi_glaciers[name_column_id]==glacier_name]
gl_geom = gl_df['geometry'].item() # glacier geometry Polygon
gl_geom_ext = Polygon(gl_geom.exterior) # glacier geometry Polygon
gl_geom_nunataks_list = [Polygon(nunatak) for nunatak in gl_geom.interiors] # list of nunataks Polygons
assert len(gl_df) == 1, "Check this please."
# print(gl_df.T)
except Exception as e:
print(f"Error. {glacier_name} not present in OGGM's RGI v62.")
return None, None
# center of glacier and glacier epsg
glacier_centroid = gl_geom_ext.centroid
cenLon, cenLat = glacier_centroid.x, glacier_centroid.y
_, _, _, _, glacier_epsg = from_lat_lon_to_utm_and_epsg(cenLat, cenLon)
print(f"Glacier {glacier_name} found. Lat: {cenLat}, Lon: {cenLon}") if verbose else None
# Geodataframes of external boundary and all internal nunataks
gl_geom_nunataks_gdf = gpd.GeoDataFrame(geometry=gl_geom_nunataks_list, crs="EPSG:4326")
gl_geom_ext_gdf = gpd.GeoDataFrame(geometry=[gl_geom_ext], crs="EPSG:4326")
# Area in km2, perimeter in m
# Note that the area in OGGM equals to area_ice.
glacier_area, perimeter_ice = Geod(ellps="WGS84").geometry_area_perimeter(gl_geom)
area_ice_and_noince, perimeter_ice_and_noice = Geod(ellps="WGS84").geometry_area_perimeter(gl_geom_ext)
glacier_area = abs(glacier_area) * 1e-6 # km^2
area_ice_and_noince = abs(area_ice_and_noince) * 1e-6 # km^2
lmax = lmax_with_covex_hull(gl_geom_ext_gdf, glacier_epsg) # m
# Calculate area of nunataks in percentage to the total area
area_noice = 1 - glacier_area / area_ice_and_noince
tgeometries = time.time() - tin
# Calculate cluster
t_cluster0 = time.time()
# Let's decide to run on cluster only on polar regions
if config.deploy_mode == 'auto': deploy_mode = 'auto'
elif config.deploy_mode == 'single': deploy_mode = 'single'
else: raise ValueError(f"Deploy mode not recognized.")
cluster_data = False
if (deploy_mode == 'auto' and rgi in [3,4,5,6,7,9,19]):
cluster_data = get_possible_cluster(rgi_graph, glacier_name, glacier_epsg, rgi, oggm_rgi_glaciers, name_column_id)
if cluster_data is not False:
# Case run on cluster
cluster_area = (cluster_data['Area'] * cluster_data['Area']).sum() / cluster_data['Area'].sum()
cluster_perimeter = (cluster_data['Perimeter'] * cluster_data['Area']).sum() / cluster_data['Area'].sum()
cluster_lmax = (cluster_data['lmax'] * cluster_data['Area']).sum() / cluster_data['Area'].sum()
list_cluster_RGIIds = cluster_data.index.tolist()
else:
# Case: run on normal glacier. Setup a cluster with connectivity 3 as usual
list_cluster_RGIIds = find_cluster_with_graph(rgi_graph, glacier_name, max_depth=graph_max_layer_depth)
# deployed_glaciers is the list of glacier IDs on which we are doing model inference. In 'auto' mode,
# list_cluster_RGIIds and deployed_glaciers are the same
deployed_glaciers = [glacier_name] if cluster_data is False else list_cluster_RGIIds
# We return the ids we have consumed
yield deployed_glaciers
# list_cluster_RGIIds contains the IDs of the glaciers in the cluster. If we're running as a single glacier,
# the cluster has a depth of 3. If we're running on auto, all glaciers in the cluster are contained.
no_glaciers_in_cluster = len(list_cluster_RGIIds)
# Create Geopandas geoseries objects of glacier geometries (boundary and nunataks)
cluster_geometry_list = oggm_rgi_glaciers.loc[
oggm_rgi_glaciers[name_column_id].isin(list_cluster_RGIIds), 'geometry'].tolist()
# Combine into a series of all glaciers in the cluster
cluster_geometry_4326 = gpd.GeoSeries(cluster_geometry_list, crs="EPSG:4326")
# Suppress the specific warning about buffering in a geographic CRS
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
message="Geometry is in a geographic CRS. Results from 'buffer' are likely incorrect")
buffered_geometries = cluster_geometry_4326.buffer(0.0004)
# remove ice divides
cluster_geometry_4326 = gpd.GeoSeries(buffered_geometries.union_all(method='unary'), crs="EPSG:4326")
# cluster exterior and interior dataframes
cluster_ext_gdf = gpd.GeoDataFrame(geometry=[Polygon(cluster_geometry_4326.iloc[0].exterior)], crs="EPSG:4326")
cluster_nunataks_gdf = gpd.GeoDataFrame(
geometry=[Polygon(interior) for interior in cluster_geometry_4326.iloc[0].interiors], crs="EPSG:4326")
#fig, ax = plt.subplots()
#cluster_geometry_4326.plot(ax=ax, color="k", ec="blue", alpha=0.5)
#plt.show()
# Calculate the area of the cluster in km2 (NOTE that given the buffer, this area is slightly bigger)
area_cluster, perimeter_cluster = Geod(ellps="WGS84").geometry_area_perimeter(Polygon(cluster_geometry_4326.iloc[0].exterior))
area_cluster = abs(area_cluster) * 1e-6 # km^2
print(f"Cluster (4326): {area_cluster:.5f} km2 and {no_glaciers_in_cluster} glaciers created in: {time.time() - t_cluster0:.3f}") if verbose else None
# Generate points
tp0 = time.time()
if cluster_data is not False:
#print(f"Running on cluster: {list_cluster_RGIIds}")
print(f"Running on cluster") if verbose else None
if config.mode_point_generation == 'random':
points = generate_points(gdf_ext=cluster_ext_gdf, gdf_nuns=cluster_nunataks_gdf, seed=seed, n_points_regression=n_points_regression_cluster)
elif config.mode_point_generation == 'grid':
points = generate_points_on_grid(gdf_ext=cluster_ext_gdf, gdf_nuns=cluster_nunataks_gdf, max_points=n_points_regression_cluster)
else: raise ValueError("Unsupported mode for data generation.")
gl_geom = Polygon(cluster_geometry_4326.iloc[0]) # override
gl_geom_ext = Polygon(gl_geom.exterior) # override
gl_geom_nunataks_gdf = cluster_nunataks_gdf # override
gl_geom_ext_gdf = cluster_ext_gdf # override
else:
print(f"Running single glacier") if verbose else None
if config.mode_point_generation == 'random':
points = generate_points(gdf_ext=gl_geom_ext_gdf, gdf_nuns=gl_geom_nunataks_gdf, seed=seed, n_points_regression=n_points_regression_single)
elif config.mode_point_generation == 'grid':
points = generate_points_on_grid(gdf_ext=gl_geom_ext_gdf, gdf_nuns=gl_geom_nunataks_gdf, max_points=n_points_regression_single)
else: raise ValueError("Unsupported mode for data generation.")
plot_gen_points = False
if plot_gen_points:
fig, (ax1, ax2) = plt.subplots(1, 2)
cluster_geometry_4326.plot(ax=ax1, ec='k', fc='none')
cluster_ext_gdf.plot(ax=ax2, ec='b', fc='none')
if len(cluster_nunataks_gdf)>0: cluster_nunataks_gdf.plot(ax=ax2, ec='r', fc='none')
ax2.scatter(x=points['lons'], y=points['lats'], s=1)
plt.show()
#fig, ax = plt.subplots()
#gl_geom_ext_gdf.plot(ax=ax, ec='blue', fc='none')
#if len(gl_geom_nunataks_gdf)>0: gl_geom_nunataks_gdf.plot(ax=ax, ec='red', fc='none')
#ax.scatter(x=points['lons'], y=points['lats'], s=1, c='k')
#plt.show()
tp1 = time.time()
tgenpoints = tp1-tp0
print(f"We have generated {len(points['lats'])} points in {tgenpoints:.3f}") if verbose else None
# Fill these features
points_df['lats'] = points['lats']
points_df['lons'] = points['lons']
points_df['nunataks'] = points['nunataks']
if (points_df['nunataks'].sum() != 0):
print(f"The generation pipeline has produced n. {points_df['nunataks'].sum()} points inside nunataks")
raise ValueError
points_df['RGI'] = rgi
#points_df['Area'] = gl_df['Area'].item()
#points_df['Zmin'] = gl_df['Zmin'].item() # we use tandemx for this
#points_df['Zmax'] = gl_df['Zmax'].item() # we use tandemx for this
#points_df['Zmed'] = gl_df['Zmed'].item() # we use tandemx for this
#points_df['Slope'] = gl_df['Slope'].item()
#points_df['Lmax'] = gl_df['Lmax'].item()
#points_df['Form'] = gl_df['Form'].item() # not used anymore
#points_df['TermType'] = gl_df['TermType'].item()
#points_df['Aspect'] = gl_df['Aspect'].item()
if cluster_data is not False:
points_df['Area'] = cluster_area # km^2
points_df['Perimeter'] = cluster_perimeter # m
points_df['lmax'] = cluster_lmax # m
#print(cluster_data['lmax'].max(), cluster_data['lmax'].mean(), cluster_lmax, cluster_data['Area'].max(),
# cluster_data['Area'].mean(), cluster_area, cluster_data['Perimeter'].max(), cluster_data['Perimeter'].mean(), cluster_perimeter)
else:
points_df['Area'] = glacier_area # km^2
points_df['Perimeter'] = perimeter_ice # m
points_df['lmax'] = lmax # m
points_df['Area_icefree'] = area_noice # unitless
points_df['Cluster_area'] = area_cluster # Note that if I run the cluster, bigger that depth=3, outside training space
points_df['Cluster_glaciers'] = no_glaciers_in_cluster
# Calculate the adaptive filter size based on the Area value
sigma_af_min, sigma_af_max = 100.0, 2000.0
# OLD
#try:
# area_gl = points_df['Area'][0]
# lmax_gl = points_df['Lmax'][0]
# a = 1e6 * area_gl / (np.pi * 0.5 * lmax_gl)
# sigma_af = int(min(max(a, sigma_af_min), sigma_af_max))
#except Exception as e:
# sigma_af = sigma_af_min
# NEW (we use lmax and not Lmax from RGI)
area_gl = points_df['Area'][0]
lmax_gl = points_df['lmax'][0]
a = 1e6 * area_gl / (np.pi * 0.5 * lmax_gl)
sigma_af = int(np.clip(a, sigma_af_min, sigma_af_max))
# Ensure that our value correctly in range
assert sigma_af_min <= sigma_af <= sigma_af_max, f"Value {sigma_af} is not within the range [{sigma_af_min}, {sigma_af_max}]"
""" Calculate Millan vx, vy, v """
print(f"Calculating vx, vy, v, ith_m...") if verbose else None
tmillan1 = time.time()
cols_millan = ['ith_m', 'v50', 'v100', 'v150', 'v300', 'v450', 'vgfa']
for col in cols_millan: points_df[col] = np.nan
def fetch_millan_data_An(points_df):
files_vx = sorted(glob(f"{config.millan_velocity_dir}RGI-19/VX_RGI-19*"))
files_ith = sorted(glob(f"{config.millan_icethickness_dir}RGI-19/THICKNESS_RGI-19*"))
print(f"Glacier {glacier_name} found. Lat: {cenLat}, Lon: {cenLon}") if verbose else None
# Check if glacier is inside the 5 Millan ith tiles
# This loop is bulletproof except for RGI60-19.00889 found inside the tile but probably will be interpolated as nan
inside_millan = False
for i, file_ith in enumerate(files_ith):
tile_ith = rioxarray.open_rasterio(file_ith, masked=False)
left, bottom, right, top = tile_ith.rio.bounds()
e, n = Transformer.from_crs("EPSG:4326", tile_ith.rio.crs).transform(cenLat, cenLon)
if left < e < right and bottom < n < top:
inside_millan = True
print(f"Found glacier in Millan tile: {file_ith}") if verbose else None
break
bedmachine_used = False
if inside_millan:
print("Interpolating Millan Antarctica") if verbose else None
tile_ith = rioxarray.open_rasterio(file_ith, masked=False)
eastings, northings = Transformer.from_crs("EPSG:4326", tile_ith.rio.crs).transform(points_df['lats'],
points_df['lons'])
cond0 = np.all(tile_ith.values == 0)
condnodata = np.all(np.abs(tile_ith.values - tile_ith.rio.nodata) < 1.e-6)
condnan = np.all(np.isnan(tile_ith.values))
all_zero_or_nodata = cond0 or condnodata or condnan
print(f"Cond1: {all_zero_or_nodata}") if verbose else None
eastings_ar = xarray.DataArray(eastings)
northings_ar = xarray.DataArray(northings)
vals_fast_interp = tile_ith.interp(y=northings_ar, x=eastings_ar, method='nearest').data
cond_valid_fast_interp = (np.isnan(vals_fast_interp).all() or
np.all(np.abs(vals_fast_interp - tile_ith.rio.nodata) < 1.e-6))
print(f"Cond2: {cond_valid_fast_interp}") if verbose else None
if all_zero_or_nodata==False and cond_valid_fast_interp==False:
# If we reached this point we should have the valid tile to interpolate
tile_ith.values = np.where((tile_ith.values == tile_ith.rio.nodata) | np.isinf(tile_ith.values),
np.nan, tile_ith.values)
tile_ith.rio.write_nodata(np.nan, inplace=True)
tile_ith = tile_ith.squeeze()
# Interpolate
ith_data = tile_ith.interp(y=northings_ar, x=eastings_ar, method="nearest").data
# Fill dataframe with Millan ith
points_df['ith_m'] = ith_data
print("Millan ith interpolated.") if verbose else None
#fig, ax = plt.subplots()
#tile_ith.plot(ax=ax, cmap='viridis')
#ax.scatter(x=eastings, y=northings, s=10, c=ith_data)
#plt.show()
else:
print('No Millan ith interpolation possible.') if verbose else None
"""Now interpolate Millan velocity"""
# In rgi 19 there is no need to make all the group occupancy stuff since tiles do not overlap.
# Fetch corresponding vx, vy files
file_ith_nopath = file_ith.rsplit('/', 1)[1]
file_ith_nopath_nodate = file_ith_nopath.rsplit('_', 1)[0]
code_19_dot_x = file_ith_nopath_nodate.rsplit('-', 1)[1]
#print(file_ith_nopath, file_ith_nopath_nodate, code_19_dot_x)
file_vx = glob(f"{config.millan_velocity_dir}RGI-19/VX_RGI-{code_19_dot_x}*")
file_vy = glob(f"{config.millan_velocity_dir}RGI-19/VY_RGI-{code_19_dot_x}*")
if file_vx and file_vy:
print('Found Millan velocity tiles.') if verbose else None
file_vx, file_vy = file_vx[0], file_vy[0]
print(file_vx) if verbose else None
print(file_vy) if verbose else None
tile_vx = rioxarray.open_rasterio(file_vx, masked=False)
tile_vy = rioxarray.open_rasterio(file_vy, masked=False)
if not tile_vx.rio.bounds() == tile_vy.rio.bounds():
input('wait - reindex necessary')
assert tile_vx.rio.crs == tile_vy.rio.crs, 'Different crs found.'
assert tile_vx.rio.bounds() == tile_vy.rio.bounds(), 'Different bounds found.'
assert tile_vx.rio.resolution() == tile_vy.rio.resolution(), "Different resolutions found."
ris_metre_millan = tile_vx.rio.resolution()[0] # 50m
minE, maxE = min(eastings), max(eastings)
minN, maxN = min(northings), max(northings)
epsM = 500
tile_vx = tile_vx.rio.clip_box(minx=minE - epsM, miny=minN - epsM, maxx=maxE + epsM, maxy=maxN + epsM)
tile_vy = tile_vy.rio.clip_box(minx=minE - epsM, miny=minN - epsM, maxx=maxE + epsM, maxy=maxN + epsM)
tile_vx.values = np.where((tile_vx.values == tile_vx.rio.nodata) | np.isinf(tile_vx.values),
np.nan, tile_vx.values)
tile_vy.values = np.where((tile_vy.values == tile_vy.rio.nodata) | np.isinf(tile_vy.values),
np.nan, tile_vy.values)
tile_vx.rio.write_nodata(np.nan, inplace=True)
tile_vy.rio.write_nodata(np.nan, inplace=True)
num_px_sigma_50 = max(1, round(50 / ris_metre_millan)) # 1
num_px_sigma_100 = max(1, round(100 / ris_metre_millan)) # 2
num_px_sigma_150 = max(1, round(150 / ris_metre_millan)) # 3
num_px_sigma_300 = max(1, round(300 / ris_metre_millan)) # 6
num_px_sigma_450 = max(1, round(450 / ris_metre_millan)) # 9
num_px_sigma_af = max(1, round(sigma_af / ris_metre_millan))
kernel50 = Gaussian2DKernel(num_px_sigma_50, x_size=4 * num_px_sigma_50 + 1, y_size=4 * num_px_sigma_50 + 1)
kernel100 = Gaussian2DKernel(num_px_sigma_100, x_size=4 * num_px_sigma_100 + 1, y_size=4 * num_px_sigma_100 + 1)
kernel150 = Gaussian2DKernel(num_px_sigma_150, x_size=4 * num_px_sigma_150 + 1, y_size=4 * num_px_sigma_150 + 1)
kernel300 = Gaussian2DKernel(num_px_sigma_300, x_size=4 * num_px_sigma_300 + 1, y_size=4 * num_px_sigma_300 + 1)
kernel450 = Gaussian2DKernel(num_px_sigma_450, x_size=4 * num_px_sigma_450 + 1, y_size=4 * num_px_sigma_450 + 1)
kernelaf = Gaussian2DKernel(num_px_sigma_af, x_size=4 * num_px_sigma_af + 1, y_size=4 * num_px_sigma_af + 1)
tile_v = tile_vx.copy(deep=True, data=(tile_vx ** 2 + tile_vy ** 2) ** 0.5)
tile_v = tile_v.squeeze()
#fig, ax = plt.subplots()
#tile_v.plot(ax=ax)
#plt.show()
# A check to see if velocity modules is as expected
assert float(tile_v.sum()) > 0, "tile v is not as expected."
"""astropy"""
preserve_nans = False
try:
focus_filter_v50 = convolve_fft(tile_v.values, kernel50, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v100 = convolve_fft(tile_v.values, kernel100, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v150 = convolve_fft(tile_v.values, kernel150, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v300 = convolve_fft(tile_v.values, kernel300, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v450 = convolve_fft(tile_v.values, kernel450, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_af = convolve_fft(tile_v.values, kernelaf, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_ith = tile_ith.squeeze()
except Exception as generic_error:
print("Impossible to smooth Millan tile with astropy.") if verbose else None
return points_df, bedmachine_used
# create xarrays of filtered velocities
focus_filter_v50_ar = tile_v.copy(deep=True, data=focus_filter_v50)
focus_filter_v100_ar = tile_v.copy(deep=True, data=focus_filter_v100)
focus_filter_v150_ar = tile_v.copy(deep=True, data=focus_filter_v150)
focus_filter_v300_ar = tile_v.copy(deep=True, data=focus_filter_v300)
focus_filter_v450_ar = tile_v.copy(deep=True, data=focus_filter_v450)
focus_filter_vfa_ar = tile_v.copy(deep=True, data=focus_filter_af)
#fig, ax = plt.subplots()
#focus_filter_v50_ar.plot(ax=ax)
#plt.show()
# Interpolate
v_data = tile_v.interp(y=northings_ar, x=eastings_ar, method="nearest").data
v_filter_50_data = focus_filter_v50_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_100_data = focus_filter_v100_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_150_data = focus_filter_v150_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_300_data = focus_filter_v300_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_450_data = focus_filter_v450_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_af_data = focus_filter_vfa_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
# Fill dataframe
points_df['v50'] = v_filter_50_data
points_df['v100'] = v_filter_100_data
points_df['v150'] = v_filter_150_data
points_df['v300'] = v_filter_300_data
points_df['v450'] = v_filter_450_data
points_df['vgfa'] = v_filter_af_data
else:
print('No Millan velocity tiles found. Likely 19.5 tile') if verbose else None
if verbose:
print(f"From Millan vx, vy, ith interpolations we have generated no. nans:")
print(", ".join([f"{col}: {points_df[col].isna().sum()}" for col in cols_millan]))
if points_df['ith_m'].isna().all():
print(f"No Millan ith data can be found for rgi {rgi} glacier {glacier_name} at {cenLat} lat {cenLon} lon.") if verbose else None
return points_df, bedmachine_used
else:
print("Interpolating NSIDC velocity and BedMachine Antarctica") if verbose else None
file_ith_NSIDC = f"{config.NSIDC_icethickness_Antarctica_dir}BedMachineAntarctica-v3.nc"
file_vel_NSIDC = f"{config.NSIDC_velocity_Antarctica_dir}antarctic_ice_vel_phase_map_v01.nc"
v_NSIDC = rioxarray.open_rasterio(file_vel_NSIDC, masked=False)
vx_NSIDC = v_NSIDC.VX
vy_NSIDC = v_NSIDC.VY
ith_NSIDC = rioxarray.open_rasterio(file_ith_NSIDC, masked=False)
ith_NSIDC = ith_NSIDC.thickness
assert vx_NSIDC.rio.crs == vy_NSIDC.rio.crs == ith_NSIDC.rio.crs, 'Different crs found in Antarctica NSIDC products.'
#print(ith_NSIDC.rio.crs, ith_NSIDC.rio.nodata, ith_NSIDC.rio.bounds(), ith_NSIDC.rio.resolution())
#print(vx.rio.crs, vx.rio.nodata, vx.rio.bounds(), vx.rio.resolution())
eastings, northings = Transformer.from_crs("EPSG:4326", vx_NSIDC.rio.crs).transform(points_df['lats'],
points_df['lons'])
eastings_ar = xarray.DataArray(eastings)
northings_ar = xarray.DataArray(northings)
minE, maxE = min(eastings), max(eastings)
minN, maxN = min(northings), max(northings)
epsM = 15000
try:
ith_NSIDC = ith_NSIDC.rio.clip_box(minx=minE - epsM, miny=minN - epsM, maxx=maxE + epsM, maxy=maxN + epsM)
except:
print('No NSIDC BedMachine ice thickness tiles around the points found.') if verbose else None
#fig, ax = plt.subplots()
#ith_NSIDC.plot(ax=ax, cmap='viridis')
#ax.scatter(x=eastings, y=northings, s=5, c='r')
#plt.show()
cond0 = np.all(ith_NSIDC.values == 0)
condnodata = np.all(np.abs(ith_NSIDC.values - ith_NSIDC.rio.nodata) < 1.e-6)
condnan = np.all(np.isnan(ith_NSIDC.values))
all_zero_or_nodata = cond0 or condnodata or condnan
print(f"Cond1 ice thickness: {all_zero_or_nodata}") if verbose else None
vals_fast_interp = ith_NSIDC.interp(y=northings_ar, x=eastings_ar, method='nearest').data
cond_valid_fast_interp = (np.isnan(vals_fast_interp).all() or
np.all(np.abs(vals_fast_interp - ith_NSIDC.rio.nodata) < 1.e-6))
print(f"Cond2 ice thickness: {cond_valid_fast_interp}") if verbose else None
if all_zero_or_nodata==False and cond_valid_fast_interp==False:
# If we reached this point we should have the valid tile to interpolate
ith_NSIDC.values = np.where((ith_NSIDC.values == ith_NSIDC.rio.nodata) | np.isinf(ith_NSIDC.values),
np.nan, ith_NSIDC.values)
ith_NSIDC.values[ith_NSIDC.values == 0.0] = np.nan
ith_NSIDC.rio.write_nodata(np.nan, inplace=True)
ith_NSIDC = ith_NSIDC.squeeze()
# Interpolate
ith_data = ith_NSIDC.interp(y=northings_ar, x=eastings_ar, method="nearest").data
# Fill dataframe with NSIDC BedMachine ith
points_df['ith_m'] = ith_data
bedmachine_used = True
print("NSIDC BedMachine ith interpolated.") if verbose else None
#fig, ax = plt.subplots()
#ith_NSIDC.plot(ax=ax, cmap='viridis')
#ax.scatter(x=eastings, y=northings, s=5, c='r')
#plt.show()
else:
print('No NSIDC BedMachine ice thickness interpolation possible.') if verbose else None
"""Now interpolate NSIDC velocity"""
eps = 15000
try:
vx_NSIDC_focus = vx_NSIDC.rio.clip_box(minx=minE - eps, miny=minN - eps, maxx=maxE + eps, maxy=maxN + eps)
vy_NSIDC_focus = vy_NSIDC.rio.clip_box(minx=minE - eps, miny=minN - eps, maxx=maxE + eps, maxy=maxN + eps)
except:
print('No NSIDC velocity tiles around the points found') if verbose else None
return points_df, bedmachine_used
# Condition 1. Either v is .rio.nodata or it is zero or it is nan
cond0 = np.all(vx_NSIDC_focus.values == 0)
condnodata = np.all(np.abs(vx_NSIDC_focus.values - vx_NSIDC_focus.rio.nodata) < 1.e-6)
condnan = np.all(np.isnan(vx_NSIDC_focus.values))
all_zero_or_nodata = cond0 or condnodata or condnan
print(f"Cond1 velocity: {all_zero_or_nodata}") if verbose else None
vals_fast_interp = vx_NSIDC_focus.interp(y=northings_ar, x=eastings_ar, method='nearest').data
cond_valid_fast_interp = (np.isnan(vals_fast_interp).all() or
np.all(np.abs(vals_fast_interp - vx_NSIDC_focus.rio.nodata) < 1.e-6))
print(f"Cond2 velocity: {cond_valid_fast_interp}") if verbose else None
if all_zero_or_nodata == False and cond_valid_fast_interp == False:
vx_NSIDC_focus.values = np.where(
(vx_NSIDC_focus.values == vx_NSIDC_focus.rio.nodata) | np.isinf(vx_NSIDC_focus.values),
np.nan, vx_NSIDC_focus.values)
vy_NSIDC_focus.values = np.where(
(vy_NSIDC_focus.values == vy_NSIDC_focus.rio.nodata) | np.isinf(vy_NSIDC_focus.values),
np.nan, vy_NSIDC_focus.values)
vx_NSIDC_focus.rio.write_nodata(np.nan, inplace=True)
vy_NSIDC_focus.rio.write_nodata(np.nan, inplace=True)
assert vx_NSIDC_focus.rio.bounds() == vy_NSIDC_focus.rio.bounds(), "NSIDC vx, vy bounds not the same"
# Note: for rgi 19 we do not interpolate NSIDC to remove nans.
tile_vx = vx_NSIDC_focus.squeeze()
tile_vy = vy_NSIDC_focus.squeeze()
ris_metre_nsidc = vx_NSIDC.rio.resolution()[0] # 450m
# Calculate how many pixels I need for a resolution of xx
# Since NDIDC has res of 450 m, num pixels will can be very small.
num_px_sigma_50 = max(1, round(50 / ris_metre_nsidc))
num_px_sigma_100 = max(1, round(100 / ris_metre_nsidc))
num_px_sigma_150 = max(1, round(150 / ris_metre_nsidc))
num_px_sigma_300 = max(1, round(300 / ris_metre_nsidc))
num_px_sigma_450 = max(1, round(450 / ris_metre_nsidc))
num_px_sigma_af = max(1, round(sigma_af / ris_metre_nsidc))
kernel50 = Gaussian2DKernel(num_px_sigma_50, x_size=4 * num_px_sigma_50 + 1, y_size=4 * num_px_sigma_50 + 1)
kernel100 = Gaussian2DKernel(num_px_sigma_100, x_size=4 * num_px_sigma_100 + 1, y_size=4 * num_px_sigma_100 + 1)
kernel150 = Gaussian2DKernel(num_px_sigma_150, x_size=4 * num_px_sigma_150 + 1, y_size=4 * num_px_sigma_150 + 1)
kernel300 = Gaussian2DKernel(num_px_sigma_300, x_size=4 * num_px_sigma_300 + 1, y_size=4 * num_px_sigma_300 + 1)
kernel450 = Gaussian2DKernel(num_px_sigma_450, x_size=4 * num_px_sigma_450 + 1, y_size=4 * num_px_sigma_450 + 1)
kernelaf = Gaussian2DKernel(num_px_sigma_af, x_size=4 * num_px_sigma_af + 1, y_size=4 * num_px_sigma_af + 1)
tile_v = tile_vx.copy(deep=True, data=(tile_vx ** 2 + tile_vy ** 2) ** 0.5)
tile_v = tile_v.squeeze()
# A check to see if velocity modules is as expected
assert float(tile_v.sum()) > 0, "tile v is not as expected."
"""astropy"""
preserve_nans = False
focus_filter_v50 = convolve_fft(tile_v.values, kernel50, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v100 = convolve_fft(tile_v.values, kernel100, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v150 = convolve_fft(tile_v.values, kernel150, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v300 = convolve_fft(tile_v.values, kernel300, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v450 = convolve_fft(tile_v.values, kernel450, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_af = convolve_fft(tile_v.values, kernelaf, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
# create xarrays of filtered velocities
focus_filter_v50_ar = tile_v.copy(deep=True, data=focus_filter_v50)
focus_filter_v100_ar = tile_v.copy(deep=True, data=focus_filter_v100)
focus_filter_v150_ar = tile_v.copy(deep=True, data=focus_filter_v150)
focus_filter_v300_ar = tile_v.copy(deep=True, data=focus_filter_v300)
focus_filter_v450_ar = tile_v.copy(deep=True, data=focus_filter_v450)
focus_filter_vfa_ar = tile_v.copy(deep=True, data=focus_filter_af)
# Interpolate
v_data = tile_v.interp(y=northings_ar, x=eastings_ar, method="nearest").data
v_filter_50_data = focus_filter_v50_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_100_data = focus_filter_v100_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_150_data = focus_filter_v150_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_300_data = focus_filter_v300_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_450_data = focus_filter_v450_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
v_filter_af_data = focus_filter_vfa_ar.interp(y=northings_ar, x=eastings_ar, method='nearest').data
# some checks
assert v_data.shape == v_filter_50_data.shape, "NSIDC interp something wrong!"
assert v_filter_50_data.shape == v_filter_100_data.shape, "NSIDC interp something wrong!"
assert v_filter_100_data.shape == v_filter_150_data.shape, "NSIDC interp something wrong!"
assert v_filter_150_data.shape == v_filter_300_data.shape, "NSIDC interp something wrong!"
assert v_filter_300_data.shape == v_filter_450_data.shape, "NSIDC interp something wrong!"
assert v_filter_450_data.shape == v_filter_af_data.shape, "NSIDC interp something wrong!"
# Fill dataframe with Millan velocities
points_df['v50'] = v_filter_50_data
points_df['v100'] = v_filter_100_data
points_df['v150'] = v_filter_150_data
points_df['v300'] = v_filter_300_data
points_df['v450'] = v_filter_450_data
points_df['vgfa'] = v_filter_af_data
print("NSIDC velocity interpolated.") if verbose else None
#fig, ax = plt.subplots()
#im = tile_vx.plot(ax=ax, cmap='binary', zorder=0, vmin=tile_vx.min(), vmax=tile_vx.max())
#ax.scatter(x=eastings, y=northings, s=10, c=vx_filter_50_data, zorder=1, vmin=tile_vx.min(), vmax=tile_vx.max(), cmap='binary')
#plt.show()
else:
print('No NSIDC velocity interpolation possible.') if verbose else None
return points_df, bedmachine_used
def fetch_millan_data_Gr(points_df):
# Note: Millan has no velocity. Velocity needs to be extracted from NSICD.
# Millan has only ith for ice caps. I can decide to use Millan ith or BedMachinev5 (has all Millan data inside)
# The fact is that BedMachine appears to downgrade the resolution of Millan (see e.g. RGI60-05.15702).
# Therefore I use Millan and, if not enough data at interpolation stage, rollback to BedMachine
file_vx = f"{config.NSIDC_velocity_Greenland_dir}greenland_vel_mosaic250_vx_v1.tif"
file_vy = f"{config.NSIDC_velocity_Greenland_dir}greenland_vel_mosaic250_vy_v1.tif"
files_ith = sorted(glob(f"{config.millan_icethickness_dir}RGI-5/THICKNESS_RGI-5*"))
file_ith_bedmacv5 = f"{config.NSIDC_icethickness_Greenland_dir}BedMachineGreenland-v5.nc"
# Interpolate Millan
# I need a dataframe for Millan with same indexes and lats lons
df_pointsM = points_df[['lats', 'lons']].copy()
df_pointsM = df_pointsM.assign(**{col: pd.Series() for col in files_ith})
# Fill the dataframe for occupancy
tocc0 = time.time()
for i, file_ith in enumerate(files_ith):
tile_ith = rioxarray.open_rasterio(file_ith, masked=False)
eastings, northings = Transformer.from_crs("EPSG:4326", tile_ith.rio.crs).transform(df_pointsM['lats'],
df_pointsM['lons'])
df_pointsM['eastings'] = eastings
df_pointsM['northings'] = northings
# Get the points inside the tile
left, bottom, right, top = tile_ith.rio.bounds()
within_bounds_mask = (
(df_pointsM['eastings'] >= left) &
(df_pointsM['eastings'] <= right) &
(df_pointsM['northings'] >= bottom) &
(df_pointsM['northings'] <= top))
df_pointsM.loc[within_bounds_mask, file_ith] = 1
df_pointsM.drop(columns=['eastings', 'northings'], inplace=True)
ncols = df_pointsM.shape[1]
print(f"Created dataframe of occupancies for all points in {time.time() - tocc0} s.") if verbose else None
# Grouping by ith occupancy. Each group will have an occupancy value
df_pointsM['ntiles_ith'] = df_pointsM.iloc[:, 2:].sum(axis=1)
print(df_pointsM['ntiles_ith'].value_counts()) if verbose else None
groups = df_pointsM.groupby('ntiles_ith') # Groups.
df_pointsM.drop(columns=['ntiles_ith'], inplace=True) # Remove this column that we used to create groups
print(f"Num groups in Millan: {groups.ngroups}") if verbose else None
for g_value, df_group in groups:
unique_ith_tiles = df_group.iloc[:, 2:].columns[df_group.iloc[:, 2:].sum() != 0].tolist()
group_lats, group_lons = df_group['lats'].values, df_group['lons'].values
for file_ith in unique_ith_tiles:
tile_ith = rioxarray.open_rasterio(file_ith, masked=False)
group_eastings, group_northings = (Transformer.from_crs("EPSG:4326", "EPSG:3413")
.transform(group_lats,group_lons))
minE, maxE = min(group_eastings), max(group_eastings)
minN, maxN = min(group_northings), max(group_northings)
epsM = 500
tile_ith = tile_ith.rio.clip_box(minx=minE - epsM, miny=minN - epsM, maxx=maxE + epsM, maxy=maxN + epsM)
# Condition no. 1. Check if ith tile is only either nodata or zero
# This condition is so soft. Glaciers may be still be present in the box. We need condition no. 2 as well
#tile_ith_is_all_zero_or_nodata = np.all(
# np.logical_or(tile_ith.values == 0, tile_ith.values == tile_ith.rio.nodata))
cond0 = np.all(tile_ith.values == 0)
condnodata = np.all(np.abs(tile_ith.values - tile_ith.rio.nodata) < 1.e-6)
condnan = np.all(np.isnan(tile_ith.values))
all_zero_or_nodata = cond0 or condnodata or condnan
#print(f"Cond1: {all_zero_or_nodata}")
if all_zero_or_nodata:
continue
# Condition no. 2. A fast and quick interpolation to see if points intercepts a valid raster region
group_eastings_ar = xarray.DataArray(group_eastings)
group_northings_ar = xarray.DataArray(group_northings)
vals_fast_interp = tile_ith.interp(y=group_northings_ar, x=group_eastings_ar, method='nearest').data
cond_valid_fast_interp = (np.isnan(vals_fast_interp).all() or
np.all(np.abs(vals_fast_interp - tile_ith.rio.nodata) < 1.e-6))
#print(f"Cond2: {cond_valid_fast_interp}")
if cond_valid_fast_interp:
continue
# If we reached this point we should have the valid tile to interpolate
tile_ith.values = np.where((tile_ith.values == tile_ith.rio.nodata) | np.isinf(tile_ith.values),
np.nan, tile_ith.values)
tile_ith.rio.write_nodata(np.nan, inplace=True)
# Note: for rgi 5 we do not interpolate to remove nans.
tile_ith = tile_ith.squeeze()
# Interpolate (note: nans can be produced near boundaries). This should be removed at the end.
ith_data = tile_ith.interp(y=group_northings_ar, x=group_eastings_ar, method="nearest").data
#fig, ax = plt.subplots()
#tile_ith.plot(ax=ax, vmin=tile_ith.min(), vmax=tile_ith.max())
#s = ax.scatter(x=group_eastings, y=group_northings, c=ith_data, ec=None, s=3, vmin=tile_ith.min(),
# vmax=tile_ith.max())
#cbar = plt.colorbar(s)
#plt.show()
#fig, ax = plt.subplots()
#s = ax.scatter(x=points_df['lons'], y=points_df['lats'], c=ith_data, s=3)
#plt.colorbar(s)
#plt.show()
# Fill dataframe with ith_m
#points_df.loc[df_group.index, 'ith_m'] = ith_data
mask_valid_ith_m = ~np.isnan(ith_data)
points_df.loc[df_group.index[mask_valid_ith_m], 'ith_m'] = ith_data[mask_valid_ith_m]
#break # Since interpolation should have only happened for the only right tile no need to evaluate others
bedmachine_used = False
# Check if Millan ith interpolation is satisfactory. If not, try BedMachine v5
millan_ith_nan_count_perc = np.isnan(points_df['ith_m']).sum() / len(points_df['ith_m'])
#print(millan_ith_nan_count_perc)
if millan_ith_nan_count_perc > .5:
bedmachine_used = True
print(f'Millan ith has too many nans for {glacier_name}. Will try to use BedMachine tiles') if verbose else None
# Interpolate BedMachinev5 ice field
tile_ith_bedmacv5 = rioxarray.open_rasterio(file_ith_bedmacv5, masked=False)
tile_ith = tile_ith_bedmacv5['thickness'] # get the ith field. Note that source is also interesting
tile_ith = tile_ith.rio.write_crs("EPSG:3413") # I know bedmachine projection is EPSG:3413
# I know bedmachine projection is EPSG:3413
eastings, northings = Transformer.from_crs("EPSG:4326", tile_ith.rio.crs).transform(points_df['lats'],
points_df['lons'])
minE, maxE = min(eastings), max(eastings)
minN, maxN = min(northings), max(northings)
epsM = 7000
tile_ith = tile_ith.rio.clip_box(minx=minE - epsM, miny=minN - epsM, maxx=maxE + epsM, maxy=maxN + epsM)
tile_ith.values[(tile_ith.values == tile_ith.rio.nodata) | (tile_ith.values == 0.0)] = np.nan
tile_ith.rio.write_nodata(np.nan, inplace=True)
tile_ith = tile_ith.squeeze()
#tile_ith.plot(cmap='turbo')
#plt.show()
eastings_ar = xarray.DataArray(eastings)
northings_ar = xarray.DataArray(northings)
ith_data = tile_ith.interp(y=northings_ar, x=eastings_ar, method="nearest").data
# Fill dataframe with ith_m
points_df['ith_m'] = ith_data
#fig, ax = plt.subplots()
#tile_ith.plot(ax=ax, vmin=tile_ith.min(), vmax=tile_ith.max())
#ax.scatter(x=eastings, y=northings, c=ith_data, ec='r', s=3, vmin=tile_ith.min(), vmax=tile_ith.max())
#plt.show()
"""At this point I am ready to interpolate the NSIDC velocity"""
tile_vx = rioxarray.open_rasterio(file_vx, masked=False)
tile_vy = rioxarray.open_rasterio(file_vy, masked=False)
assert tile_vx.rio.bounds() == tile_vy.rio.bounds(), 'Different bounds found.'
assert tile_vx.rio.crs == tile_vy.rio.crs, 'Different crs found.'
#print(tile_vx.rio.nodata, tile_vy.rio.nodata)
all_eastings, all_northings = Transformer.from_crs("EPSG:4326", tile_vx.rio.crs).transform(points_df['lats'],
points_df['lons'])
all_eastings_ar = xarray.DataArray(all_eastings)
all_northings_ar = xarray.DataArray(all_northings)
minE, maxE = min(all_eastings), max(all_eastings)
minN, maxN = min(all_northings), max(all_northings)
epsNSIDC = 500
tile_vx = tile_vx.rio.clip_box(minx=minE - epsNSIDC, miny=minN - epsNSIDC, maxx=maxE + epsNSIDC, maxy=maxN + epsNSIDC)
tile_vy = tile_vy.rio.clip_box(minx=minE - epsNSIDC, miny=minN - epsNSIDC, maxx=maxE + epsNSIDC, maxy=maxN + epsNSIDC)
# Condition for NSIDC v
tile_vx_is_all_nodata = np.all(tile_vx.values == tile_vx.rio.nodata)
# If we have some NSIDC data
if not tile_vx_is_all_nodata:
tile_vx.values = np.where((tile_vx.values == tile_vx.rio.nodata) | np.isinf(tile_vx.values),
np.nan, tile_vx.values)
tile_vy.values = np.where((tile_vy.values == tile_vy.rio.nodata) | np.isinf(tile_vy.values),
np.nan, tile_vy.values)
#tile_vx.values[tile_vx.values == tile_vx.rio.nodata] = np.nan
#tile_vy.values[tile_vy.values == tile_vy.rio.nodata] = np.nan
tile_vx.rio.write_nodata(np.nan, inplace=True)
tile_vy.rio.write_nodata(np.nan, inplace=True)
assert tile_vx.rio.crs == tile_vy.rio.crs == tile_ith.rio.crs, "NSIDC tiles vx, vy with different epsg."
assert tile_vx.rio.resolution() == tile_vy.rio.resolution(), "NSIDC vx, vy have different resolution."
assert tile_vx.rio.bounds() == tile_vy.rio.bounds(), "NSIDC vx, vy bounds not the same"
# Note: for rgi 5 we do not interpolate NSIDC to remove nans.
tile_vx = tile_vx.squeeze()
tile_vy = tile_vy.squeeze()
ris_metre_nsidc = tile_vx.rio.resolution()[0] # 250m
# Calculate how many pixels I need for a resolution of xx
# Since NDIDC has res of 250 m, num pixels will be very small, 1-3.
num_px_sigma_50 = max(1, round(50 / ris_metre_nsidc))
num_px_sigma_100 = max(1, round(100 / ris_metre_nsidc))
num_px_sigma_150 = max(1, round(150 / ris_metre_nsidc))
num_px_sigma_300 = max(1, round(300 / ris_metre_nsidc))
num_px_sigma_450 = max(1, round(450 / ris_metre_nsidc))
num_px_sigma_af = max(1, round(sigma_af / ris_metre_nsidc))
kernel50 = Gaussian2DKernel(num_px_sigma_50, x_size=4 * num_px_sigma_50 + 1, y_size=4 * num_px_sigma_50 + 1)
kernel100 = Gaussian2DKernel(num_px_sigma_100, x_size=4 * num_px_sigma_100 + 1, y_size=4 * num_px_sigma_100 + 1)
kernel150 = Gaussian2DKernel(num_px_sigma_150, x_size=4 * num_px_sigma_150 + 1, y_size=4 * num_px_sigma_150 + 1)
kernel300 = Gaussian2DKernel(num_px_sigma_300, x_size=4 * num_px_sigma_300 + 1, y_size=4 * num_px_sigma_300 + 1)
kernel450 = Gaussian2DKernel(num_px_sigma_450, x_size=4 * num_px_sigma_450 + 1, y_size=4 * num_px_sigma_450 + 1)
kernelaf = Gaussian2DKernel(num_px_sigma_af, x_size=4 * num_px_sigma_af + 1, y_size=4 * num_px_sigma_af + 1)
# Very important
# tile_v = (tile_vx**2 + tile_vy**2)**0.5
tile_v = tile_vx.copy(deep=True, data=(tile_vx ** 2 + tile_vy ** 2) ** 0.5)
tile_v = tile_v.squeeze()
# A check to see if velocity modules is as expected
assert float(tile_v.sum()) > 0, "tile v is not as expected."
"""astropy"""
preserve_nans = False
focus_filter_v50 = convolve_fft(tile_v.values, kernel50, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v100 = convolve_fft(tile_v.values, kernel100, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v150 = convolve_fft(tile_v.values, kernel150, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v300 = convolve_fft(tile_v.values, kernel300, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_v450 = convolve_fft(tile_v.values, kernel450, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
focus_filter_af = convolve_fft(tile_v.values, kernelaf, nan_treatment='interpolate',
preserve_nan=preserve_nans, boundary='fill', fill_value=np.nan)
# create xarrays of filtered velocities
focus_filter_v50_ar = tile_v.copy(deep=True, data=focus_filter_v50)
focus_filter_v100_ar = tile_v.copy(deep=True, data=focus_filter_v100)
focus_filter_v150_ar = tile_v.copy(deep=True, data=focus_filter_v150)
focus_filter_v300_ar = tile_v.copy(deep=True, data=focus_filter_v300)
focus_filter_v450_ar = tile_v.copy(deep=True, data=focus_filter_v450)
focus_filter_vfa_ar = tile_v.copy(deep=True, data=focus_filter_af)
#fig, ax = plt.subplots()
#focus_filter_v300_ar.plot(ax=ax)
#plt.show()
# Interpolate
v_data = tile_v.interp(y=all_northings_ar, x=all_eastings_ar, method="nearest").data
v_filter_50_data = focus_filter_v50_ar.interp(y=all_northings_ar, x=all_eastings_ar, method='nearest').data
v_filter_100_data = focus_filter_v100_ar.interp(y=all_northings_ar, x=all_eastings_ar,method='nearest').data
v_filter_150_data = focus_filter_v150_ar.interp(y=all_northings_ar, x=all_eastings_ar,method='nearest').data
v_filter_300_data = focus_filter_v300_ar.interp(y=all_northings_ar, x=all_eastings_ar,method='nearest').data
v_filter_450_data = focus_filter_v450_ar.interp(y=all_northings_ar, x=all_eastings_ar,method='nearest').data
v_filter_af_data = focus_filter_vfa_ar.interp(y=all_northings_ar, x=all_eastings_ar,method='nearest').data
# Fill dataframe with NSIDC velocities
points_df['v50'] = v_filter_50_data
points_df['v100'] = v_filter_100_data
points_df['v150'] = v_filter_150_data
points_df['v300'] = v_filter_300_data
points_df['v450'] = v_filter_450_data
points_df['vgfa'] = v_filter_af_data
plot_nsidc_green_4paper = False
if plot_nsidc_green_4paper:
from matplotlib.gridspec import GridSpec
# Note this works for a greenland glacier with EPSG:3413
#fig, (ax1, ax2) = plt.subplots(1,2, figsize=(5.7,3))
fig = plt.figure(figsize=(9,5))
gs = GridSpec(1, 3, width_ratios=[1, 1, 0.05])
# Create the axes
ax1 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[1])
cax = fig.add_subplot(gs[2])
nuns = gl_geom_nunataks_gdf.to_crs(crs="EPSG:3413")
ext = gl_geom_ext_gdf.to_crs(crs="EPSG:3413")
ext.plot(ax=ax1, edgecolor='k', facecolor='none', linewidth=1, zorder=2)
nuns.plot(ax=ax1, edgecolor='k', facecolor='none', linewidth=1, zorder=2)
norm = LogNorm(vmin=1, vmax=4000)
im = focus_filter_v50_ar.plot(ax=ax1, cmap='jet', alpha=1, norm=norm, add_colorbar=False)
s = ax2.scatter(x=all_eastings_ar, y=all_northings_ar, c=points_df['v50'],
cmap='jet', s=5, ec=None, norm=norm, alpha=1, zorder=1)
ext.plot(ax=ax2, edgecolor='k', facecolor='none', linewidth=1, zorder=2)
nuns.plot(ax=ax2, edgecolor='k', facecolor='none', linewidth=1, zorder=2)
#cbar1 = plt.colorbar(s, ax=cax, fraction=0.062, pad=0.04)
#cbar2 = plt.colorbar(s, ax=ax2, fraction=0.062, pad=0.04)
#cbar1.set_label('Ice surface velocity (m/yr)')
#cbar2.set_label('Ice surface velocity (m/yr)')
cbar1 = plt.colorbar(s, cax=cax) # ax=ax1)
cbar1.ax.tick_params(labelsize=16)
cbar1.set_label('Ice surface velocity (m/yr)', labelpad=15, rotation=90, fontsize=16)
ax1.set_xlim(ax2.get_xlim())
ax1.set_ylim(ax2.get_ylim())
ax1.set_title('')
ax1.set_xlabel('Eastings (m)', fontsize=16)