-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_metadata.py
785 lines (640 loc) · 31.1 KB
/
utils_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
import time
import utm
import warnings
import scipy
import random
import numpy as np
import pandas as pd
import geopandas as gpd
from pyproj import Proj, Transformer, Geod
from sklearn.neighbors import KDTree
from scipy.spatial import distance_matrix
from shapely.geometry import Point, Polygon, LineString, MultiLineString, box
from oggm import utils
import xgboost as xgb
import catboost as cb
from PIL import Image
import matplotlib.pyplot as plt
import networkx
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance in kilometers between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371 # Radius of earth in kilometers. Determines return value units.
return c * r
def haversine_vectorized(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance in kilometers between two sets of points
on the earth (specified in decimal degrees). Works with arrays for vectorized calculations.
"""
# Convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
# Haversine formula
dlon = lon2 - lon1[:, np.newaxis] # Broadcasting lon1 across lon2
dlat = lat2 - lat1[:, np.newaxis] # Broadcasting lat1 across lat2
a = np.sin(dlat / 2) ** 2 + np.cos(lat1[:, np.newaxis]) * np.cos(lat2) * np.sin(dlon / 2) ** 2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371 # Radius of Earth in kilometers
return c * r # Returns distance in kilometers
def lmax_with_covex_hull(geometry, glacier_epsg):
'''
This method calculates lmax using the geometry convex hull.
It should be exactly equivalent to lmax_imputer with KDTree but much faster.
'''
geometry_epsg = geometry.to_crs(epsg=glacier_epsg) # Geodataframe
gl_geom = geometry_epsg.iloc[0].geometry # Polygon
# Compute the convex hull
convex_hull = gl_geom.convex_hull
# Extract coordinates from the convex hull's exterior
coords_hull = np.array(convex_hull.exterior.coords)
# Compute pairwise distances between all points on the convex hull
dist_matrix = distance_matrix(coords_hull, coords_hull)
lmax = np.max(dist_matrix)
ifplot = False
if ifplot:
# Only for plotting purposes
gdf = gpd.GeoDataFrame({
'geometry': [gl_geom, convex_hull],
'type': ['Glacier geometry', 'Convex Hull']
})
# Find the indices of the maximum distance
max_idx = np.unravel_index(np.argmax(dist_matrix), dist_matrix.shape)
point1, point2 = coords_hull[max_idx[0]], coords_hull[max_idx[1]]
fig, ax = plt.subplots()
gdf.plot(ax=ax, color=['lightgrey', 'none'], edgecolor=['k', 'blue'], linestyle=['-', '--'])
ax.plot([point1[0], point2[0]], [point1[1], point2[1]], color='blue', linestyle='-', linewidth=2,
label=f'Lmax = {lmax:.2f}')
plt.legend(handles=[
plt.Line2D([0], [0], color='k', label='Glacier geometry'),
plt.Line2D([0], [0], color='blue', linestyle='--', label='Convex Hull'),
plt.Line2D([0], [0], color='blue', label=f'Lmax = {lmax:.0f} m')], fontsize=14, loc='upper left')
plt.tick_params(labelsize=14)
ax.set_xlabel("Eastings [m]", fontsize=16)
ax.set_ylabel("Northings [m]", fontsize=16)
plt.show()
return lmax
def lmax_imputer(geometry, glacier_epsg):
'''
geometry: glacier external geometry as pandas geodataframe in 4326 prjection
glacier_epsg: glacier espg
return: lmax in meters
'''
geometry_epsg = geometry.to_crs(epsg=glacier_epsg)
glacier_vertices = np.array(geometry_epsg.iloc[0].geometry.exterior.coords)
tree_lmax = KDTree(glacier_vertices)
dists, _ = tree_lmax.query(glacier_vertices, k=len(glacier_vertices))
lmax = np.max(dists)
return lmax
def from_lat_lon_to_utm_and_epsg(lat, lon):
"""https://github.com/Turbo87/utm"""
# Note lat lon can be also NumPy arrays.
# In this case zone letter and number will be calculate from first entry.
easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon)
southern_hemisphere_TrueFalse = True if zone_letter < 'N' else False
epsg_code = 32600 + zone_number + southern_hemisphere_TrueFalse * 100
return (easting, northing, zone_number, zone_letter, epsg_code)
def gaussian_filter_with_nans(U, sigma, trunc=4.0):
# Since the reprojection into utm leads to distortions (=nans) we need to take care of this during filtering
# From David in https://stackoverflow.com/questions/18697532/gaussian-filtering-a-image-with-nan-in-python
V = U.copy()
V[np.isnan(U)] = 0
VV = scipy.ndimage.gaussian_filter(V, sigma=[sigma, sigma], mode='nearest', truncate=trunc)
W = np.ones_like(U)
W[np.isnan(U)] = 0
WW = scipy.ndimage.gaussian_filter(W, sigma=[sigma, sigma], mode='nearest', truncate=trunc)
WW[WW == 0] = np.nan
filtered_U = VV / WW
return filtered_U
def get_cmap(name):
from matplotlib.colors import LinearSegmentedColormap
if name == 'white_electric_blue':
# (0.11764706, 0.56470588, 1.0)] dodgerblue
colors = [(1, 1, 1), (0.0, 0.0, .8)] # White to electric blue
cm = LinearSegmentedColormap.from_list(name, colors)
if name == 'black_electric_green':
cm = LinearSegmentedColormap.from_list(name, ['#000000', '#00FF00'])
if name == 'black_electric_blue':
cm = LinearSegmentedColormap.from_list(name, ['#000000', '#0000CC'])
if name == 'dark_green_to_blue':
# Dark green to grey, then white, light blue, and blue
colors = ['#006400', '#808080', '#FFFFFF', '#ADD8E6', '#0000FF'] # Dark green, grey, white, light blue, blue
cm = LinearSegmentedColormap.from_list(name, colors)
if name == 'dark_green_to_purple':
colors = ['#006400', '#808080', '#ADD8E6', '#0000FF', '#800080'] # Dark green, grey, light blue, blue, purple
cm = LinearSegmentedColormap.from_list(name, colors)
elif name == 'grey_to_blue_orange':
colors = ['#808080', '#A0D8E6', '#3F00FF', '#800080', '#FFA500'] # Grey, light blue, blue, purple, orange
cm = LinearSegmentedColormap.from_list(name, colors)
elif name == 'white_to_brown':
colors = [(1, 1, 1), '#8B4513']
cm = LinearSegmentedColormap.from_list(name, colors)
elif name == 'white_to_orange':
colors = [(1, 1, 1), '#f47200']
cm = LinearSegmentedColormap.from_list(name, colors)
return cm
def calc_geoid_heights(lons=None, lats=None, h_wgs84=None):
'''Calculates orthometric heights'''
transformer = Transformer.from_crs("epsg:4326", "epsg:3855", always_xy=True)
_, _, h_egm2008 = transformer.transform(lons, lats, h_wgs84)
return h_egm2008
#def calc_volume_glacier(y1=None, y2=None, area=0, h_egm2008=None):
def calc_volume_glacier(y=None, area=0, h_egm2008=None):
'''
:param y1: numpy.ndarray. Ice thickness [m]
:param y2: numpy.ndarray. Ice thickness [m]
:param area: float [km2]
:return: volume [km3].
'''
#y_xgb = y1
#y_cat = y2
#N = len(y1)
N = len(y)
f = 0.001 * area / N
# Millan or Farinotti
#if y2 is None:
# volume = np.sum(y1) * f
# return volume
# iceboost
#else:
#y_mean = 0.5 * (y_xgb + y_cat)
#y_mean = np.where(y_mean < 0, 0, y_mean)
# volume ice
#volume = np.sum(y_mean) * f
volume = np.sum(y) * f
# volume ice above sea level
#volume_af = np.sum(np.where(h_egm2008 - y_mean > 0, y_mean, h_egm2008)) * f
# volume ice below sea level
#volume_bsl = np.sum(np.where(h_egm2008 - y_mean > 0, 0.0, y_mean - h_egm2008)) * f
volume_bsl = np.sum(np.where(h_egm2008 - y > 0, 0.0, y - h_egm2008)) * f
#err_points = np.std((y_xgb, y_cat), axis=0)
err_points = 0
# This error considers the point-wise spread between the models
err_volume_points = np.sqrt(np.sum(err_points**2)) * f
# This error is the semi-difference of the 2 modeled volumes.
#err_volume_range = 0.5 * np.abs(np.sum(y_xgb) - np.sum(y_cat)) * f
err_volume_range = 0
# Add in quadrature the two errors
err_volume = np.sqrt(err_volume_points**2 + err_volume_range**2)
return volume, err_volume, volume_bsl
def calc_volume_glacier_from_ar(ar=None, area=0):
"""
:param ar: xarray with 'thickness' and 'h_egm2008' fields
:param area: glacier area
:return: volume (km3) and volume below sea level (km3)
"""
vals_thickness_np = ar['thickness'].values
vals_h_egm2008_np = ar['h_egm2008'].values
N = np.count_nonzero(~np.isnan(vals_thickness_np))
f = 0.001 * area / N
# Calculate the volume
vol = np.nansum(vals_thickness_np) * f
vol_bsl = np.nansum(
np.where(vals_h_egm2008_np - vals_thickness_np > 0, 0.0, vals_thickness_np - vals_h_egm2008_np)) * f
return vol, vol_bsl
def get_random_glacier_rgiid(name=None, rgi=11, version=None, area=None, seed=None):
"""Provide a rgi number and seed. This method returns a
random glacier rgiid name.
If not rgi is passed, any rgi region is good.
"""
if version == '62':
name_column_id = 'RGIId'
area_column_id = 'Area'
elif version == '70G':
name_column_id = 'rgi_id'
area_column_id = 'area_km2'
if name is not None: return name
if seed is not None:
np.random.seed(seed)
if rgi is not None:
oggm_rgi_shp = utils.get_rgi_region_file(f"{rgi:02d}", version=version)
oggm_rgi_glaciers = gpd.read_file(oggm_rgi_shp, engine='pyogrio')
if area is not None:
oggm_rgi_glaciers = oggm_rgi_glaciers[oggm_rgi_glaciers[area_column_id] > area]
rgi_ids = oggm_rgi_glaciers[name_column_id].dropna().unique().tolist()
rgiid = np.random.choice(rgi_ids)
return rgiid
def create_train_test(df, rgi=None, frac=0.1, full_shuffle=None, seed=None):
"""
- rgi se voglio creare il test in una particolare regione
- frac: quanto lo voglio grande in percentuale alla grandezza del rgi
"""
if seed is not None:
random.seed(seed)
if rgi is not None and full_shuffle is True:
df_rgi = df[df['RGI'] == rgi]
test = df_rgi.sample(frac=frac, random_state=seed)
train = df.drop(test.index)
return train, test
if full_shuffle is True:
test = df.sample(frac=frac, random_state=seed)
train = df.drop(test.index)
return train, test
# create test based on rgi
if rgi is not None:
df_rgi = df[df['RGI']==rgi]
else:
df_rgi = df
minimum_test_size = round(frac * len(df_rgi))
unique_glaciers = df_rgi['RGIId'].unique()
random.shuffle(unique_glaciers)
selected_glaciers = []
n_total_points = 0
#print(unique_glaciers)
for glacier_name in unique_glaciers:
if n_total_points < minimum_test_size:
selected_glaciers.append(glacier_name)
n_points = df_rgi[df_rgi['RGIId'] == glacier_name].shape[0]
n_total_points += n_points
#print(glacier_name, n_points, n_total_points)
else:
#print('Finished with', n_total_points, 'points, and', len(selected_glaciers), 'glaciers.')
break
test = df_rgi[df_rgi['RGIId'].isin(selected_glaciers)]
train = df.drop(test.index)
#print(test['RGI'].value_counts())
#print(test['RGIId'].value_counts())
#print('Total test size: ', len(test))
#print(train.describe().T)
#input('wait')
return train, test
def load_models(config_file):
model_xgb_filename = config_file.model_input_dir + config_file.model_filename_xgb
iceboost_xgb = xgb.Booster()
iceboost_xgb.load_model(model_xgb_filename)
model_cat_filename = config_file.model_input_dir + config_file.model_filename_cat
iceboost_cat = cb.CatBoostRegressor()
iceboost_cat.load_model(model_cat_filename, format='cbm')
return iceboost_xgb, iceboost_cat
def create_PIL_image(array, png_resolution=None):
"""
Given 2d numpy ndarray returns PIL image for .png
"""
array = np.flipud(array)
array_min = np.nanmin(array)
array_max = np.nanmax(array)
array_normalized = (array - array_min) / (array_max - array_min) * 255
array_normalized = np.nan_to_num(array_normalized, nan=0).astype(np.uint8)
colormap = plt.cm.jet
colored_array = colormap(array_normalized)
colored_array = (colored_array[:, :, :3] * 255).astype(np.uint8)
alpha_channel = np.where(np.isnan(array), 0, 255).astype(np.uint8)
rgba_array = np.dstack((colored_array, alpha_channel))
image = Image.fromarray(rgba_array)
image_resized = image.resize((png_resolution, png_resolution), Image.Resampling.LANCZOS)
return image_resized
def get_rgi_products(rgi, version, gdf_shp=None, gdf_intersects_shp=None):
if version not in ('62', '70G'):
raise ValueError("Accepted RGI versions are 62 or 70G. Exit.")
if not isinstance(rgi, str): rgi = f"{rgi:02d}"
# If shp is provided as input
if gdf_shp is not None:
FILE_RGI_SHP = gdf_shp
FILE_RGI_INTERSECTS_SHP = gdf_intersects_shp
# run rgi shp
else:
# get rgi region and intersect shp files
FILE_RGI_SHP = utils.get_rgi_region_file(rgi, version=version)
FILE_RGI_INTERSECTS_SHP = utils.get_rgi_intersects_region_file(rgi, version=version)
# get rgi dataset of glaciers and glaciers intersects
rgi_glaciers = gpd.read_file(FILE_RGI_SHP, engine='pyogrio')
rgi_intersects = gpd.read_file(FILE_RGI_INTERSECTS_SHP, engine='pyogrio')
# Create graph of connectivity needed for distance calculations
rgi_graph = networkx.Graph()
if version == '62':
edges = rgi_intersects[['RGIId_1', 'RGIId_2']].values
if version == '70G':
edges = rgi_intersects[['rgi_g_id_1', 'rgi_g_id_2']].values
rgi_graph.add_edges_from(edges)
# mass balance rgi dataframe
mbdf = utils.get_geodetic_mb_dataframe()
mbdf = mbdf.loc[mbdf['period'] == '2000-01-01_2020-01-01']
mbdf_rgi = mbdf.loc[mbdf['reg'] == int(rgi)]
rgi_products = (rgi_glaciers, rgi_graph, mbdf_rgi)
return rgi_products
def get_coastline_dataframe(GSHHG_folder):
gdf16 = gpd.read_file(f'{GSHHG_folder}GSHHS_f_L1_L6.shp', engine='pyogrio')
return gdf16
def find_cluster_with_graph(graph, start_node, max_depth=None):
if not graph.has_node(start_node):
return [start_node]
# Find all nodes in the connected component
#neighbors = networkx.node_connected_component(graph, start_node)
#return list(neighbors)
# Use a BFS traversal to get nodes up to the max_depth
nodes_at_depth = set()
nodes_to_visit = [(start_node, 0)] # (node, current_depth)
while nodes_to_visit:
current_node, current_depth = nodes_to_visit.pop(0)
# If max_depth is not None and current_depth exceeds max_depth, stop processing this branch
if max_depth is not None and current_depth > max_depth:
continue
# Add the current node to the set of nodes to return
nodes_at_depth.add(current_node)
# Add neighbors to the list with incremented depth
neighbors = list(graph.neighbors(current_node))
for neighbor in neighbors:
if neighbor not in nodes_at_depth:
nodes_to_visit.append((neighbor, current_depth + 1))
return list(nodes_at_depth)
def get_possible_cluster(graph, start_node, glacier_epsg, rgi, oggm_rgi_glaciers, name_column_id):
if not graph.has_node(start_node):
return False # Return False if the start node is not in the graph (isolated glacier)
# Step 1: Create a cluster, i.e. all glaciers connected to the start glacier
cluster_nodes = networkx.node_connected_component(graph, start_node)
# Step 2: Extract cluster info
cluster = graph.subgraph(cluster_nodes)
cluster_min_depth = networkx.radius(cluster)
cluster_no_nodes = cluster.number_of_nodes()
cluster_no_edges = cluster.number_of_edges()
if rgi == 3: is_low_complexity = (cluster_min_depth <= 5 and cluster_no_nodes <= 50 and cluster_no_edges <= 90)
elif rgi == 4: is_low_complexity = (cluster_min_depth <= 5 and cluster_no_nodes <= 40 and cluster_no_edges <= 90)
elif rgi == 5: is_low_complexity = (cluster_min_depth <= 5 and cluster_no_nodes <= 40 and cluster_no_edges <= 90)
elif rgi == 6: is_low_complexity = (cluster_min_depth <= 6 and cluster_no_nodes <= 100 and cluster_no_edges <= 999)
elif rgi == 7: is_low_complexity = (cluster_min_depth <= 6 and cluster_no_nodes <= 40 and cluster_no_edges <= 90)
elif rgi == 9: is_low_complexity = (cluster_min_depth <= 12 and cluster_no_nodes <= 144 and cluster_no_edges <= 252)
elif rgi == 19: is_low_complexity = (cluster_min_depth <= 3 and cluster_no_nodes <= 30 and cluster_no_edges <= 40)
else: raise ValueError(f"Deploy on cluster not supported for rgi {rgi}")
#print(cluster_min_depth, cluster_no_nodes, cluster_no_edges, is_low_complexity)
# Step 3: If cluster too complex, exit.
if is_low_complexity is False:
return False
# Step 4: Initialize a dataframe with cluster ids, Area, Perimeter, lmax
df_cluster = pd.DataFrame(0.0, index=list(cluster_nodes), columns=['Area', 'Perimeter', 'lmax'])
df_cluster.index.name = 'cluster_IDs'
for glacier_name in df_cluster.index:
gl_df = oggm_rgi_glaciers.loc[oggm_rgi_glaciers[name_column_id] == glacier_name]
gl_geom = gl_df['geometry'].item() # glacier geometry Polygon
gl_geom_ext = Polygon(gl_geom.exterior)
gl_geom_ext_gdf = gpd.GeoDataFrame(geometry=[gl_geom_ext], crs="EPSG:4326")
lmax = lmax_with_covex_hull(gl_geom_ext_gdf, glacier_epsg) # we use the epsg of the starting glacier for all
area, perimeter = Geod(ellps="WGS84").geometry_area_perimeter(gl_geom)
area = abs(area) * 1e-6 # km^2
df_cluster.loc[glacier_name, 'Area'] = area
df_cluster.loc[glacier_name, 'Perimeter'] = perimeter
df_cluster.loc[glacier_name, 'lmax'] = lmax
#print(glacier_name, '\t', area, perimeter, lmax)
# Return cluster dataframe with IDs, Area, Perimeter and lmax values
return df_cluster
def normalized_elevation(h, Hmin, Hmax):
'''
:param h: elevation (accepted types are scalar, numpy array or pandas series)
:param Hmin: glacier minimum elevation
:param Hmax: glacier maximum elevation
:return: normalized height 0 to 1
'''
h_np = np.asarray(h) # Convert h to a NumPy array
if np.all(Hmin == Hmax): # handles scalars and arrays
result = np.zeros_like(h_np)
else:
result = np.clip((h_np - Hmin) / (Hmax - Hmin), 0, 1)
# Handle return type for different types of h
if isinstance(h, (np.ndarray, pd.Series)):
return result.astype(h.dtype)
elif isinstance(h, list):
return result.tolist()
else:
return float(result)
def get_version_and_rgi_from_id(id):
'''
:param id: name of the glacier (string)
:return: rgi and version ('62 or '70G')
'''
if id.startswith('RGI60'):
version_rgi = '62'
rgi = id[6:8]
elif id.startswith('RGI2000'):
version_rgi = '70G'
rgi = id[15:17]
return rgi, version_rgi
def plot_feature_scatter(config, test_glacier):
"""
Plot scatter plots for features in the given configuration against the glacier data.
Parameters:
- config: An object that contains the 'features' attribute.
- test_glacier: A DataFrame containing 'lons', 'lats', and feature data.
"""
feats = config.features
num_feats = len(feats) # Number of features
cols = 6
rows = (num_feats // cols) + (num_feats % cols > 0)
fig, axes = plt.subplots(rows, cols, figsize=(16, 4 * rows))
axes = axes.ravel()
for idx, feat in enumerate(feats):
sc = axes[idx].scatter(x=test_glacier['lons'], y=test_glacier['lats'], c=test_glacier[feat], s=1, cmap='jet')
axes[idx].set_xticks([])
axes[idx].set_yticks([])
axes[idx].tick_params(labelbottom=False, labelleft=False)
axes[idx].text(0.05, 0.95, feat, transform=axes[idx].transAxes,
fontsize=10, verticalalignment='top', color='black', weight='bold')
# Hide any unused subplots
for i in range(len(feats), len(axes)):
axes[i].axis('off')
plt.tight_layout()
plt.show()
def generate_points_on_grid(gdf_ext=None, gdf_nuns=None, max_points=None):
# Get the bounding box of the external boundary
llx, lly, urx, ury = gdf_ext.total_bounds
# Calculate bounding box width and height
bbox_width = urx - llx
bbox_height = ury - lly
bbox_height_meters = 1000 * haversine(llx, lly, llx, ury)
bbox_width_meters = 1000 * haversine(llx, lly, urx, lly)
aspect_ratio = bbox_height_meters / bbox_width_meters
# print("Box height and width:", bbox_height_meters, bbox_width_meters, "meters")
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
bbox_area = gdf_ext.geometry.area.iloc[0] # area in deg squared
# Calculate Base resolution derived from total area and max points
base_resolution = np.sqrt(bbox_area / max_points)
#print("Base resolution:", base_resolution, "Aspect ratio:", aspect_ratio)
# Adjust grid resolution for longitude and latitude for aspect ratio
lon_resolution = base_resolution / np.sqrt(aspect_ratio)
lat_resolution = base_resolution * np.sqrt(aspect_ratio)
#print("Grid resolution:", lon_resolution, lat_resolution)
# Generate grid points
x_coords = np.arange(llx-0.001, urx+0.001, lon_resolution)
y_coords = np.arange(lly-0.001, ury+0.001, lat_resolution)
xx, yy = np.meshgrid(x_coords, y_coords)
grid_points = gpd.GeoDataFrame(geometry=gpd.points_from_xy(xx.ravel(), yy.ravel()), crs="EPSG:4326")
# Filter points inside the glacier boundary
points_in_glacier_gdf = gpd.sjoin(grid_points, gdf_ext, how="inner", predicate="within").drop(columns=['index_right'])
# Remove points inside nunataks
if gdf_nuns is not None and not gdf_nuns.empty:
points_not_in_nunataks_gdf = gpd.sjoin(points_in_glacier_gdf, gdf_nuns, how="left", predicate="within")
valid_points_gdf = points_not_in_nunataks_gdf[points_not_in_nunataks_gdf.index_right.isna()].drop(
columns=['index_right'])
else:
valid_points_gdf = points_in_glacier_gdf
# Prepare dictionary output
points = {
"lons": valid_points_gdf.geometry.x.tolist(),
"lats": valid_points_gdf.geometry.y.tolist(),
"nunataks": [0.0] * len(valid_points_gdf)
}
plot_gen_points = False
if plot_gen_points:
fig, ax = plt.subplots()
gdf_ext.plot(ax=ax, ec='k', fc='none', linewidth=2)
if len(gdf_nuns)>0: gdf_nuns.plot(ax=ax, ec='orange', fc='none')
valid_points_gdf.plot(ax=ax, color='blue', alpha=0.5, markersize=1)
plt.show()
#print(f"We have generated: {len(points["lons"])} points")
return points
def generate_points(gdf_ext=None, gdf_nuns=None, n_points_regression=None, seed=None):
points = {'lons': [], 'lats': [], 'nunataks': []}
if seed is not None: np.random.seed(seed)
llx, lly, urx, ury = gdf_ext.total_bounds # geometry bounds
while (len(points['lons']) < n_points_regression):
batch_size = min(n_points_regression, n_points_regression - len(points['lons'])) # Adjust batch size as needed
r_lons = np.random.uniform(llx, urx, batch_size)
r_lats = np.random.uniform(lly, ury, batch_size)
points_batch_gdf = gpd.GeoDataFrame(geometry=gpd.points_from_xy(r_lons, r_lats), crs="EPSG:4326")
# A bit faster
# 1) Select only those points generated inside the external polygon
# points_in_glacier_gdf = gpd.sjoin(points_batch_gdf, gl_geom_ext_gdf, how="inner", predicate="within").drop(columns=['index_right'])
# 2) Exclude points that are inside any internal polygons
# points_in_internal_polygons_gdf = gpd.sjoin(points_in_glacier_gdf, gl_geom_nunataks_gdf, how="left", predicate="within")
# points_not_in_nunataks_gdf = points_in_internal_polygons_gdf[points_in_internal_polygons_gdf.index_right.isna()]
# A bit slower
# 1) First we select only those points generated inside the glacier
points_yes_no_ext_gdf = gpd.sjoin(points_batch_gdf, gdf_ext, how="left", predicate="within")
points_in_glacier_gdf = points_yes_no_ext_gdf[~points_yes_no_ext_gdf.index_right.isna()].drop(
columns=['index_right'])
indexes_of_points_inside = points_in_glacier_gdf.index
# 2) Then we get rid of all those generated inside nunataks
points_yes_no_nunataks_gdf = gpd.sjoin(points_batch_gdf.loc[indexes_of_points_inside], gdf_nuns,
how="left", predicate="within")
points_not_in_nunataks_gdf = points_yes_no_nunataks_gdf[points_yes_no_nunataks_gdf.index_right.isna()].drop(
columns=['index_right'])
points['lons'].extend(points_not_in_nunataks_gdf['geometry'].x.tolist())
points['lats'].extend(points_not_in_nunataks_gdf['geometry'].y.tolist())
points['nunataks'].extend([0.0] * len(points_not_in_nunataks_gdf))
plot_gen_points = False
if plot_gen_points:
points_in_nunataks_gdf = points_yes_no_nunataks_gdf[~points_yes_no_nunataks_gdf.index_right.isna()].drop(
columns=['index_right'])
fig, ax = plt.subplots()
#ax.plot(*gl_geom.exterior.xy, color='blue')
gdf_ext.plot(ax=ax, ec='k', fc='none', linewidth=2)
gdf_nuns.plot(ax=ax, ec='orange', fc='none')
ax.scatter(x=points['lons'], y=points['lats'], c='b', alpha=0.5, s=1)
#gl_geom_nunataks_gdf.plot(ax=ax, color='orange', alpha=0.5)
#points_in_glacier_gdf.plot(ax=ax, color='red', alpha=0.5, markersize=1, zorder=2)
#points_not_in_nunataks_gdf.plot(ax=ax, color='blue', alpha=0.5, markersize=20, zorder=2)
#points_in_nunataks_gdf.plot(ax=ax, color='red', alpha=0.5, markersize=1, zorder=2)
plt.show()
return points
def geographic_split_adaptive(glaciers_df, n_jobs, version):
"""
Split glaciers into n_jobs geographic chunks, adapting to aspect ratio.
Args:
glaciers_df (pd.DataFrame): DataFrame from RGI (imported via OGGM).
n_jobs (int): Number of geographic chunks to create.
Returns:
list of pd.DataFrame: list of lists. Each sublist contains glacier ids in a geographic chunk.
"""
if version == '62':
name_column_id = 'RGIId'
name_column_area = 'Area'
name_column_name = 'Name'
name_column_lon, name_column_lat = 'CenLon', 'CenLat'
elif version == '70G':
name_column_id = 'rgi_id'
name_column_area = 'area_km2'
name_column_name = 'glac_name'
name_column_lon, name_column_lat = 'cenlon', 'cenlat'
if n_jobs == 1:
split_ids = glaciers_df[name_column_id].to_list()
return [split_ids]
# Extract geographic bounds
lon_min, lon_max = glaciers_df[name_column_lon].min(), glaciers_df[name_column_lon].max()
lat_min, lat_max = glaciers_df[name_column_lat].min(), glaciers_df[name_column_lat].max()
#print(lon_min, lon_max, lat_min, lat_max)
# Calculate aspect ratio
delta_lon = lon_max - lon_min
delta_lat = lat_max - lat_min
# Calculate the desired aspect ratio
aspect_ratio = delta_lon / delta_lat
# Function to generate all factor pairs of n_jobs
def get_factor_pairs(n_jobs):
factors = []
for i in range(1, int(np.sqrt(n_jobs)) + 1):
if n_jobs % i == 0:
factors.append((i, n_jobs // i))
return factors
# Function to select the best split pair based on aspect ratio
def find_best_split_pair(factors, aspect_ratio):
best_pair = None
best_ratio_diff = float('inf')
for (a, b) in factors:
# Calculate aspect ratio of the pair
pair_aspect_ratio = a / b
# Find the difference between the pair's aspect ratio and the desired one
ratio_diff = abs(pair_aspect_ratio - aspect_ratio)
# If this pair is closer to the desired aspect ratio, choose it
if ratio_diff < best_ratio_diff:
best_pair = (a, b)
best_ratio_diff = ratio_diff
return best_pair
# Generate factor pairs of n_jobs
factors = get_factor_pairs(n_jobs)
# Find the best split pair that respects the aspect ratio
splits_lon, splits_lat = find_best_split_pair(factors, aspect_ratio)
# Add assertion to verify the split consistency
assert splits_lon * splits_lat == n_jobs, f"Splits ({splits_lon}x{splits_lat}) do not equal the number of jobs ({n_jobs})."
#print(splits_lon, ' x ', splits_lat)
# Define grid edges (buffer of 0.5deg)
lon_bins = np.linspace(lon_min-0.5, lon_max+0.5, splits_lon + 1)
lat_bins = np.linspace(lat_min-0.5, lat_max+0.5, splits_lat + 1)
# Initialize chunks
# Assign glaciers to chunks
chunks = []
for i in range(splits_lon):
for j in range(splits_lat):
in_chunk = glaciers_df[
(glaciers_df[name_column_lon] >= lon_bins[i]) & (glaciers_df[name_column_lon] < lon_bins[i + 1]) &
(glaciers_df[name_column_lat] >= lat_bins[j]) & (glaciers_df[name_column_lat] < lat_bins[j + 1])
]
# Skip empty chunks
if not in_chunk.empty:
chunks.append(in_chunk)
#print(i,j,len(in_chunk))
# Calculate how many more chunks are needed
no_missing = n_jobs - len(chunks)
while no_missing > 0:
#print(no_missing)
# Find the largest chunk
largest_chunk_idx = np.argmax([len(chunk) for chunk in chunks])
largest_chunk = chunks.pop(largest_chunk_idx) # Remove the largest chunk
# Split the largest chunk into two parts (based on latitude or longitude)
if (largest_chunk[name_column_lon].max() - largest_chunk[name_column_lon].min()) > (
largest_chunk[name_column_lat].max() - largest_chunk[name_column_lat].min()):
# Split along longitude
mid_lon = largest_chunk[name_column_lon].median()
left_chunk = largest_chunk[largest_chunk[name_column_lon] <= mid_lon]
right_chunk = largest_chunk[largest_chunk[name_column_lon] > mid_lon]
else:
# Split along latitude
mid_lat = largest_chunk[name_column_lat].median()
left_chunk = largest_chunk[largest_chunk[name_column_lat] <= mid_lat]
right_chunk = largest_chunk[largest_chunk[name_column_lat] > mid_lat]
# Add the split chunks back to the list
chunks.append(left_chunk)
chunks.append(right_chunk)
# Decrease the missing chunks count by 1, since we replaced one chunk with two
no_missing -= 1
assert len(chunks) == n_jobs, "Final number of chunks does not match n_jobs"
# List of lists. Every sublist contains the ids for multiproc.
split_ids = [chunk[name_column_id].tolist() for chunk in chunks]
# check
flattened_ids = [item for sublist in split_ids for item in sublist]
assert set(flattened_ids) == set(glaciers_df[name_column_id].values), "Some ids went missing."
return split_ids