-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_train.py
302 lines (221 loc) · 11.7 KB
/
model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import copy
import os
import cv2
import time
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from umap import UMAP
from CFG import CFG
from data import ParticleDataset, get_transforms
from model import CustomModel, Hook
from functs import AverageMeter, train_fn, valid_fn
from utils import plot_confusion_matrix
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
# # ====================================================
# Create train / val / test datasets
# # ====================================================
camp = pd.read_csv('datasets/camp.csv').sample(frac=1)
grim = pd.read_csv('datasets/grim.csv').sample(frac=1)
dust = pd.read_csv('datasets/dust.csv').sample(frac=1)
qrob = pd.read_csv('datasets/qrob.csv').sample(frac=1)
qsub = pd.read_csv('datasets/qsub.csv').sample(frac=1)
corylus = pd.read_csv('datasets/corylus.csv').sample(frac=1)
cont = pd.read_csv('datasets/cont.csv').sample(frac=1)
Nval = 500
Ntest = 500
camp_val, camp_test, camp_train = camp[:Nval], camp[Nval:Nval+Ntest], camp[Nval+Ntest:]
corylus_val, corylus_test, corylus_train = corylus[:Nval], corylus[Nval:Nval+Ntest], corylus[Nval+Ntest:]
dust_val, dust_test, dust_train = dust[:Nval], dust[Nval:Nval+Ntest], dust[Nval+Ntest:].sample(8000)
grim_val, grim_test, grim_train = grim[:Nval], grim[Nval:Nval+Ntest], grim[Nval+Ntest:]
qrob_val, qrob_test, qrob_train = qrob[:Nval], qrob[Nval:Nval+Ntest], qrob[Nval+Ntest:]
qsub_val, qsub_test, qsub_train = qsub[:Nval], qsub[Nval:Nval+Ntest], qsub[Nval+Ntest:]
cont_val, cont_test, cont_train = cont[:Nval], cont[Nval:Nval+Ntest], cont[Nval+Ntest:]
train_label_sizes = [len(i) for i in (camp_train, corylus_train, dust_train, grim_train, qrob_train, qsub_train, cont_train)]
weights = np.max(train_label_sizes) / train_label_sizes
print(f'Train dataset sizes {train_label_sizes}')
train = pd.concat([camp_train, corylus_train, dust_train, grim_train, qrob_train, qsub_train, cont_train], ignore_index = True)
val = pd.concat([camp_val, corylus_val, dust_val, grim_val, qrob_val, qsub_val, cont_val], ignore_index = True)
test = pd.concat([camp_test, corylus_test, dust_test, grim_test, qrob_test, qsub_test, cont_test], ignore_index = True)
print(f'Train dataset: {len(train)} items')
print(f'Val dataset: {len(val)} items')
print(f'Test dataset: {len(test)} items')
train_meta = copy.deepcopy(train)
val_meta = copy.deepcopy(val)
test_meta = copy.deepcopy(test)
# Scaler
scaler = StandardScaler()
train_meta[CFG.cols_mva] = scaler.fit_transform(train_meta[CFG.cols_mva])
val_meta[CFG.cols_mva] = scaler.transform(val_meta[CFG.cols_mva])
test_meta[CFG.cols_mva] = scaler.transform(test_meta[CFG.cols_mva])
# ====================================================
# model & optimizer
# ====================================================
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'working with {device}')
model = CustomModel(CFG.model_name, pretrained=CFG.if_pretrained)
model.to(device)
optimizer = AdamW(model.parameters(), lr=CFG.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
if CFG.load_model:
# first, load checkpoint in GPU
checkpoint = torch.load(CFG.OUTPUT_DIR+f'{CFG.model_name_saved}.pth', map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
#epoch = checkpoint['epoch_state_dict']
# ====================================================
# Train/val loop
# ====================================================
def train_loop(model, optimizer):
train_dataset = ParticleDataset(train_meta, transform=get_transforms(data='train'))
valid_dataset = ParticleDataset(val_meta, transform=get_transforms(data='valid'))
train_loader = DataLoader(train_dataset, batch_size=CFG.batch_size, shuffle=True,
num_workers=CFG.num_workers, pin_memory=True, drop_last=True)
valid_loader = DataLoader(valid_dataset, batch_size=CFG.batch_size, shuffle=True,
num_workers=CFG.num_workers, pin_memory=True, drop_last=True)
scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
classweights = torch.Tensor(weights).to(device)
criterion = nn.BCEWithLogitsLoss(weight=classweights)
# ====================================================
# loop
# ====================================================
print('Start training loop.')
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []
for epoch in range(CFG.epochs):
print(f'-' * 10)
print(f'Epoch {epoch}/{CFG.epochs - 1}')
# train
train_epoch_loss_history, train_epoch_acc_history = train_fn(train_loader, model, criterion, optimizer,
scheduler, device)
train_loss_history.append(np.mean(train_epoch_loss_history))
train_acc_history.append(np.mean(train_epoch_acc_history))
# val
val_epoch_loss_history, val_epoch_acc_history = valid_fn(valid_loader, model, criterion, device)
val_loss_history.append(np.mean(val_epoch_loss_history))
val_acc_history.append(np.mean(val_epoch_acc_history))
# If epoch validation accuracy has improved, deep copy the model
if np.mean(val_epoch_acc_history) > best_acc:
best_acc = np.mean(val_epoch_acc_history)
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
# load best model weights
model.load_state_dict(best_model_wts)
# save model
if CFG.save_model is True:
if os.path.isdir(CFG.OUTPUT_DIR): None
else: os.makedirs(CFG.OUTPUT_DIR)
torch.save({
'epoch_state_dict': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, CFG.OUTPUT_DIR + f'{CFG.model_name_saved}.pth')
return train_loss_history, train_acc_history, val_loss_history, val_acc_history, model
# train
train_loss_history, train_acc_history, val_loss_history, val_acc_history, model = train_loop(model, optimizer)
model_train_val_loss_acc = pd.DataFrame({'epoch': list(range(CFG.epochs)),
'train_loss':train_loss_history,
'train_acc':train_acc_history,
'val_loss':val_loss_history,
'val_acc':val_acc_history,
})
model_train_val_loss_acc.to_csv('model_training_performance.csv', index=False)
# ====================================================
# Test loop.
# Test dataset = 500 items/class
# ====================================================
def test_loop(model, test_meta):
print('Start test loop.')
start = time.time()
model.eval()
hookfeatures = []
# Initialize val dataset and dataloader
test_dataset = ParticleDataset(test_meta, transform=get_transforms(data='valid'))
test_loader = DataLoader(test_dataset, batch_size=CFG.batch_size, shuffle=True,
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
# Initialize a dictionary of results
results_test = {'paths': [], 'preds': np.array([]), 'labels': np.array([])}
with torch.no_grad():
for i, (images, labels, paths, xfeatures) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
xfeatures = xfeatures.to(device)
y_preds = model(images, xfeatures)
preds = (y_preds == y_preds.max(dim=1, keepdim=True)[0]).to(dtype=torch.int32)
pred_indexes = torch.max(preds, 1)[1].cpu().numpy()
label_indexes = torch.max(labels, 1)[1].cpu().numpy()
hook_emb = hook[0].output.detach().cpu().numpy() # (CFG.batch_size, 64)
hookfeatures.append(hook_emb)
# Fill dictionary with validation dataset results
results_test['paths'] += paths
results_test['preds'] = np.concatenate((results_test['preds'], pred_indexes), axis=0)
results_test['labels'] = np.concatenate((results_test['labels'], label_indexes), axis=0)
results_test['hookfeatures'] = np.vstack(hookfeatures).tolist() # (3500, 64)
print(f'Test complete in {time.time() - start:.2f}s')
return results_test
# Initialize layers to be monitored: FC layer of the resnet network
hook = [Hook(name, layer, backward=False) for name, layer in model.named_modules() if name=='base.fc']
print(f'How many layers we are monitoring: {len(hook)}')
print(f'We are monitoring: {hook[0].name}')
# Test loop and save results
results_test = test_loop(model, test_meta)
results_test_df = pd.DataFrame.from_dict(results_test)
results_test_df.to_csv ('model_test_results.csv', index=False, header=True)
# Confusion Matrix
cm_orig = confusion_matrix(results_test['labels'], results_test['preds'])
# we shuffle the confusion matrix according to labels list
cm = confusion_matrix(results_test['labels'], results_test['preds'], labels=[2,0,3,1,4,5,6])
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
print(f'Confusion matrix: \n {cm}')
print(f'Test accuracy: {accuracy:.4f}')
# Plot Confusion Matrix
ax = plot_confusion_matrix(cm,
target_names = ['Dust', 'Tephra F.', 'Tephra B.', 'C. avellana', 'Q. robur', 'Q. suber', 'Contam.'],
axis_titles = None,
title = '',
normalize = True,
savefig = CFG.save_conf_matrix
)
plt.show()
# UMAP on the hook embeddings
if CFG.run_umap_test:
umap = UMAP(n_components=2, set_op_mix_ratio=.8, n_neighbors=25, min_dist=0.6, init='random', random_state=0)
X_2d_umap_test = umap.fit_transform(results_test['hookfeatures']) # (3500, 2)
target_ids = [0, 1, 2, 3, 4, 5, 6]
colors = ['cyan', 'lime', 'peru', 'k', 'darkgreen', 'mediumseagreen', 'blue']
# plot
fig, ax1 = plt.subplots(1, 1, figsize=(6, 6))
for i, c, label in zip(target_ids, colors, CFG.target_cols):
ax1.scatter(X_2d_umap_test[results_test['labels'] == i, 0],
X_2d_umap_test[results_test['labels'] == i, 1],
c=c, s=8, alpha=0.5, label=label, zorder=2)
ax1.set_xlabel('UMAP1', fontsize=14)
ax1.set_ylabel('UMAP2', fontsize=14)
ax1.set_xlim(-15, 23)
ax1.set_ylim(-15, 23)
ax1.grid(True, zorder=1)
legend_elements = [Line2D([0], [0], marker='o', c='w', label='Dust', mfc='peru', ms=10),
Line2D([0], [0], marker='o', c='w', label='Tephra F.', mfc='cyan', ms=10),
Line2D([0], [0], marker='o', c='w', label='Tephra B.', mfc='k', ms=10),
Line2D([0], [0], marker='o', c='w', label='Contam/Blurry', mfc='blue', ms=10),
Line2D([0], [0], marker='o', c='w', label='Corylus Av.', mfc='lime', ms=10),
Line2D([0], [0], marker='o', c='w', label='Quercus R.', mfc='darkgreen', ms=10),
Line2D([0], [0], marker='o', c='w', label='Quercus S.', mfc='mediumseagreen', ms=10)
]
leg = ax1.legend(handles=legend_elements)
leg.set_title('Test set (N=3500)', prop={'size': 12, 'weight': 'bold'})
plt.savefig('umap_test.pdf', bbox_inches='tight', pad_inches=.1)
plt.show()