forked from Bibeknam/programming-techniques
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfibonacci_fastest.c
61 lines (51 loc) · 1.25 KB
/
fibonacci_fastest.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include <stdio.h>
#include <stdlib.h>
void mat_product(unsigned long long a[], unsigned long long b[], unsigned long long result[]) {
// assuming matrix is always 2 x 2
result[0] = a[0] * b[0] + a[1] * b[2];
result[1] = a[0] * b[1] + a[1] * b[3];
result[2] = a[2] * b[0] + a[3] * b[2];
result[3] = a[2] * b[1] + a[3] * b[3];
}
int main(int argc, char* argv[]) {
int n, i, temp, len;
unsigned long long bin[1000], **fib;
unsigned long long result[4];
if (argc != 2) {
printf("Usage: outputfile n\n");
exit(1);
}
n = atoi(argv[1]);
temp = n;
len = 1;
while(n / 2 > 0) {
bin[len - 1] = n % 2;
n = n/2;
len++;
}
if (n == 1) {
bin[len - 1] = 1;
}
fib = (unsigned long long**) malloc(sizeof(unsigned long long*) * len);
for (i = 0; i < len; i++) {
fib[i] = (unsigned long long*) malloc(sizeof(unsigned long long*)*4);
}
fib[0][0] = 0;
fib[0][1] = 1;
fib[0][2] = 1;
fib[0][3] = 1;
for (i = 1; i < len; i++) {
mat_product(fib[i - 1], fib[i - 1], fib[i]);
}
result[0] = fib[len - 1][0];
result[1] = fib[len - 1][1];
result[2] = fib[len - 1][2];
result[3] = fib[len - 1][3];
for(i = 0; i < len - 1; i++) {
if (bin[i] == 1) {
mat_product(fib[i], result, result);
}
}
printf("F(%d) => %llu\n", temp, result[1]);
return 0;
}