-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathWorker.py
153 lines (127 loc) · 5.83 KB
/
Worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-
from collections import deque
import gym
import numpy as np
import random
from RL.PPO import PPO
class Worker(object):
def __init__(self, scope, parameter_dict, SESS, MEMORY_DICT, COORD):
self.env = gym.make(parameter_dict['GAME'])
self.ppo = PPO(scope, parameter_dict, self.env)
self.COORD = COORD
self.MEMORY_DICT = MEMORY_DICT
self.name = scope
self.sess = SESS
self.CUR_EP = 0
self.EPOCH_MAX = parameter_dict['EPOCH_MAX']
self.MAX_EPOCH_STEPS = parameter_dict['MAX_EPOCH_STEPS']
self.MAX_AC_EXP_RATE = parameter_dict['MAX_AC_EXP_RATE']
self.MIN_AC_EXP_RATE = parameter_dict['MIN_AC_EXP_RATE']
self.AC_EXP_EPOCH = parameter_dict['AC_EXP_PERCENTAGE'] * parameter_dict['EPOCH_MAX']
self.SCHEDULE = parameter_dict['SCHEDULE']
self.GAMMA = parameter_dict['GAMMA']
self.LAM = parameter_dict['LAM']
self.ENV_SAMPLE_ITERATIONS = parameter_dict['ENV_SAMPLE_ITERATIONS']
self.LOG_FILE_PATH = parameter_dict['LOG_FILE_PATH']
def work(self, PUSH_EVENT, UPDATE_EVENT, log_writer):
while not self.COORD.should_stop():
buffer_s, buffer_a, buffer_r = deque(), deque(), deque()
buffer_predv, buffer_done, buffer_epr = deque(), deque(), deque()
s = self.env.reset()
EPR = 0
index = 0
while index < self.MAX_EPOCH_STEPS:
if not PUSH_EVENT.is_set():
PUSH_EVENT.wait()
self.sess.run(self.ppo.sync_pis)
buffer_s, buffer_a, buffer_r = deque(), deque(), deque()
buffer_predv, buffer_done, buffer_epr = deque(), deque(), deque()
s = self.env.reset()
EPR = 0
index = 0
else:
action, pred_v = self.act(s)
s_, r, done, _ = self.env.step(action)
buffer_s.append(s)
buffer_a.append(action)
buffer_r.append(r)
buffer_predv.append(pred_v)
buffer_done.append(done)
s = s_
EPR += r
index += 1
if done:
buffer_epr.append(EPR)
s = self.env.reset()
EPR = 0
self.CUR_EP += 1
print self.name, "finished iterator", self.CUR_EP, "\n"
buffer_s = list(buffer_s)
buffer_a = list(buffer_a)
buffer_r = list(buffer_r)
buffer_predv = list(buffer_predv)
buffer_done = list(buffer_done)
buffer_epr = list(buffer_epr)
if self.SCHEDULE == 'constant':
self.cur_lr = 1.0
elif self.SCHEDULE == 'linear':
self.cur_lr = max(1.0 - float(self.CUR_EP) / self.EPOCH_MAX, 0)
buffer_done = np.append(buffer_done, 0)
buffer_predv_tmp = np.append(buffer_predv, pred_v * (1 - done))
T = len(buffer_r)
buffer_adv = np.empty(T, 'float32')
lastgaelam = 0
for t in reversed(range(T)):
nonterminal = 1 - buffer_done[t + 1]
delta = buffer_r[t] + self.GAMMA * buffer_predv_tmp[t + 1] * nonterminal - buffer_predv_tmp[t]
buffer_adv[t] = lastgaelam = delta + self.GAMMA * self.LAM * nonterminal * lastgaelam
buffer_etr = np.add(buffer_adv.tolist(), buffer_predv)
buffer_adv = (buffer_adv - buffer_adv.mean()) / buffer_adv.std()
buffer_s, buffer_a = np.vstack(buffer_s), np.vstack(buffer_a)
buffer_etr, buffer_adv = np.vstack(buffer_etr), np.vstack(buffer_adv)
batchs = deque()
batchs.append(buffer_s)
batchs.append(buffer_a)
batchs.append(buffer_adv)
batchs.append(buffer_etr)
batchs.append(self.cur_lr)
feed_dict = {
self.ppo.s: buffer_s,
self.ppo.action: buffer_a,
self.ppo.advantage: buffer_adv,
self.ppo.estimatedReturn: buffer_etr,
self.ppo.l_mul: self.cur_lr,
}
if (self.name == 'Worker_N0'):
summary = self.sess.run(self.ppo.summary_op, feed_dict)
log_writer.add_summary(summary, self.CUR_EP)
queryItem = [self.ppo.policyLoss, self.ppo.valueLoss, self.ppo.entropyLoss, self.ppo.total_loss]
policyLoss, valueLoss, entropyLoss, totalLoss = self.sess.run(queryItem, feed_dict)
buffer_epr = np.array(buffer_epr)
score = buffer_epr.mean() / buffer_epr.std()
logs = deque()
logs.append(score)
logs.append(buffer_epr.min())
logs.append(buffer_epr.max())
logs.append(buffer_epr.mean())
logs.append(policyLoss)
logs.append(valueLoss)
logs.append(entropyLoss)
logs.append(totalLoss)
logs.append(self.CUR_EP)
batchs.append(list(logs))
if (len(buffer_epr) > 0):
self.MEMORY_DICT[self.name].append(list(batchs))
UPDATE_EVENT.set()
def act(self, s):
if (self.CUR_EP >= self.AC_EXP_EPOCH):
cur_exp_rate = self.MIN_AC_EXP_RATE
else:
cur_exp_rate = self.MAX_AC_EXP_RATE + self.CUR_EP * (self.MIN_AC_EXP_RATE - self.MAX_AC_EXP_RATE) / self.AC_EXP_EPOCH
action, pred_v = self.sess.run([self.ppo.ca, self.ppo.pipredv], {self.ppo.s: [s]})
action_space = self.env.action_space
if random.random() < cur_exp_rate:
self.returnAction = random.randint(0, action_space.n - 1)
else:
self.returnAction = action[0][0]
return self.returnAction, pred_v[0][0][0]