forked from spawnaga/FlexTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagentsEpsGreed.py
456 lines (391 loc) · 21.1 KB
/
agentsEpsGreed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 17 16:51:50 2023
@author: alial
"""
import datetime
import os
import pickle
import random
import sys
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
from tensorflow.compat.v1.keras.layers import CuDNNLSTM
from tensorflow.keras.layers import Input, Dense, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
# Start the asyncio event loop
class Memory:
def __init__(self, task=None, max_size=100):
# if not hasattr(self, task):
# return
# else:
self.buffer = []
if not hasattr(self, 'priorities'):
self.priorities = []
else:
if self.priorities is None:
self.priorities = []
self.max_size = max_size
def add(self, experience, priority=1):
if len(self.buffer) == self.max_size:
self.buffer.pop(0)
self.priorities.pop(0)
self.buffer.append(experience)
self.priorities.append(priority)
def sample(self, batch_size):
total_priority = sum(self.priorities)
probs = [p / total_priority for p in self.priorities]
indices = random.choices(range(len(self.buffer)), k=batch_size, weights=probs)
experiences = [self.buffer[i] for i in indices]
return experiences
def _size(self):
return len(self.buffer)
def update_priorities(self, indices, priorities):
for i, p in zip(indices, priorities):
self.priorities[i] = p
def clear(self):
self.buffer = []
class MultiTask:
def __init__(self, task, state_size, action_size=5, job='test', layers=3):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = 0.01
self.task = task
if job == 'train':
self.epsilon = 3.0
else:
self.epsilon = -1
if task == 'dqn':
# Initialize DQN model
self.dqn_learning_rate = 0.1
self.dqn_model, self.dqn_log = self._build_model(action_size, layers)
self.dqn_memory = Memory(task, max_size=50000)
self.dqn_gamma = 0.95
self.dqn_epsilon = self.epsilon
self.dqn_epsilon_min = 0.6
self.dqn_epsilon_decay = 0.95
self.dqn_learning_rate = 0.001
elif task == 'ddqn':
# Initialize DDQN model
self.ddqn_learning_rate = 0.1
self.ddqn_model, self.ddqn_log = self._build_model(action_size, layers)
self.ddqn_target_model, self.ddqn_target_log = self._build_model(action_size, layers)
self.ddqn_memory = Memory(task, max_size=50000)
self.ddqn_gamma = 0.95
self.ddqn_epsilon = self.epsilon
self.ddqn_epsilon_min = 0.4
self.ddqn_epsilon_decay = 0.995
elif task == 'actor_critic':
# Initialize actor-critic model
self.actor_critic_learning_rate = 0.1
self.actor_critic_model, self.actor_critic_log = self._build_model(action_size, layers)
self.actor_critic_memory = Memory(task, max_size=50000)
self.actor_critic_gamma = 0.95
self.actor_critic_alpha = 0.001
self.actor_critic_alpha_decay = 0.995
self.actor_critic_alpha_min = 0.01
self.actor_critic_epsilon = self.epsilon
self.actor_critic_epsilon_decay = 0.995
self.actor_critic_epsilon_min = 0.4
elif task == 'policy_gradient':
# Initialize PPO model
self.policy_gradient_learning_rate = 0.1
self.policy_gradient_model, self.policy_gradient_log = self._build_model(action_size, layers=6)
self.policy_gradient_memory = Memory(task, max_size=50000)
self.policy_gradient_gamma = 0.95
self.policy_gradient_epsilon = self.epsilon
self.policy_gradient_alpha_decay = 0.995
self.policy_gradient_alpha_min = 0.4
def _build_model(self, num_outputs, layers=3):
# Define the input layer
input_layer = Input((self.state_size,))
x = input_layer
logdir = "logs/fit/" + self.task + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# Define the hidden layers using CuDNNLSTM
x = Lambda(lambda x: tf.expand_dims(x, axis=1))(x)
for _ in range(layers):
x = CuDNNLSTM(64, return_sequences=True)(x) # number of hidden layers
# Define the output layers for the first and second tasks
output = Dense(num_outputs, activation='softmax')(x)
# Create the model
model = Model(inputs=input_layer, outputs=output)
# Learning rate scheduler
boundaries = [100, 200, 500, 1000, 3000]
values = [0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001]
lr_schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
boundaries, values)
# Compile the model
model.compile(optimizer=Adam(learning_rate=lr_schedule), loss='categorical_crossentropy')
return model, logdir
def add_dqn_transition(self, state, action, reward, next_state, done):
# Add a transition to the memory for the DQN task
transition = (state, action, reward, next_state, done)
self.dqn_memory.add(transition)
def add_ddqn_transition(self, state, action, reward, next_state, done):
# Add a transition to the memory for the DDQN task
transition = (state, action, reward, next_state, done)
self.ddqn_memory.add(transition)
def add_actor_critic_transition(self, state, action, reward, next_state, done):
# Add a transition to the memory for the actor-critic task
transition = (state, action, reward, next_state, done)
self.actor_critic_memory.add(transition)
def add_policy_gradient_transition(self, state, action, reward, next_state, done):
# Add a transition to the memory for the policy gradient task
transition = (state, action, reward, next_state, done)
self.policy_gradient_memory.add(transition)
def replay_dqn(self, batch_size):
if self.dqn_memory._size() < batch_size:
return
experiences = self.dqn_memory.sample(batch_size)
states, actions, rewards, next_states, dones = zip(*experiences)
states = np.concatenate(states)
actions = np.array(actions)
rewards = np.array(rewards)
dones = np.array(dones)
next_states = np.concatenate(next_states)
target_Qs = self.dqn_model.predict(states.squeeze()).squeeze()
target_Qs_next = self.dqn_model.predict(next_states.squeeze()).squeeze()
actions = np.reshape(actions, (batch_size,))
dones = np.reshape(dones, (batch_size,))
rewards = np.reshape(rewards, (batch_size,))
target_Qs[np.arange(batch_size), actions] = rewards + self.dqn_gamma * np.max(target_Qs_next, axis=1) * (
1 - dones)
with tf.summary.create_file_writer(self.dqn_log).as_default():
history = self.dqn_model.fit(states, np.expand_dims(target_Qs, axis=1), epochs=1, verbose=0)
tf.summary.scalar("loss", history.history['loss'][0], step=self.dqn_model.optimizer.iterations)
def replay_ddqn(self, batch_size):
if self.ddqn_memory._size() < batch_size:
return
experiences = self.ddqn_memory.sample(batch_size)
states, actions, rewards, next_states, dones = zip(*experiences)
states = np.vstack(states)
next_states = np.vstack(next_states)
actions = np.vstack(actions)
rewards = np.vstack(rewards)
dones = np.vstack(dones)
actions = np.reshape(actions, (batch_size,))
dones = np.reshape(dones, (batch_size,))
rewards = np.reshape(rewards, (batch_size,))
q_values = self.ddqn_model.predict(states.squeeze()).squeeze()
next_q_values = self.ddqn_target_model.predict(next_states.squeeze()).squeeze()
a = np.argmax(self.ddqn_model.predict(next_states.squeeze()).squeeze(), axis=1)
q_values[np.arange(batch_size), actions] = rewards + self.ddqn_gamma * next_q_values[
np.arange(batch_size), a] * (1 - dones)
with tf.summary.create_file_writer(self.ddqn_log).as_default():
history = self.ddqn_model.fit(states, np.expand_dims(a=q_values, axis=1), verbose=0)
tf.summary.scalar("loss", history.history['loss'][0], step=self.ddqn_model.optimizer.iterations)
self.update_target_model()
def update_target_model(self):
self.ddqn_target_model.set_weights(self.ddqn_model.get_weights())
def replay_actor_critic(self, batch_size):
"""Method for training the actor-critic model using experience replay"""
# Sample a batch of experiences from the memory
if self.actor_critic_memory._size() < batch_size:
return
experiences = self.actor_critic_memory.sample(batch_size)
states = np.array([e[0] for e in experiences])
actions = np.array([e[1] for e in experiences])
rewards = np.array([e[2] for e in experiences])
next_states = np.array([e[3] for e in experiences])
dones = np.array([e[4] for e in experiences])
# Predict the Q-values of the next states
next_q_values = self.actor_critic_model.predict(next_states.squeeze()).squeeze()
# Compute the target Q-values
target_q_values = rewards + self.actor_critic_gamma * (1 - dones) * np.amax(next_q_values, axis=1)
# Update the Q-values of the current states
target_q_values_batch = self.actor_critic_model.predict(states.squeeze()).squeeze()
for i, action in enumerate(actions):
target_q_values_batch[i, action] = target_q_values[i]
# Fit the model on the experiences
with tf.summary.create_file_writer(self.actor_critic_log).as_default():
history = self.actor_critic_model.fit(states.squeeze(), np.expand_dims(target_q_values_batch, axis=1),
epochs=1,
verbose=0)
tf.summary.scalar("loss", history.history['loss'][0], step=self.actor_critic_model.optimizer.iterations)
self.actor_critic_alpha *= self.actor_critic_alpha_decay
self.actor_critic_alpha = max(self.actor_critic_alpha_min, self.actor_critic_alpha)
self.actor_critic_model.optimizer.learning_rate = self.actor_critic_alpha
def replay_policy_gradient(self, batch_size):
experiences = self.policy_gradient_memory.sample(batch_size)
states = np.array([e[0] for e in experiences])
rewards = np.array([e[2] for e in experiences])
# Compute the advantages
advantages = rewards - np.mean(rewards)
advantages = (advantages - np.mean(advantages)) / (np.std(advantages) + 1e-10)
with tf.GradientTape() as tape:
# Forward pass of the model
logits = self.policy_gradient_model(states.squeeze())
logits = tf.reshape(logits, (-1, self.action_size))
log_probs = tf.nn.log_softmax(logits)
# Sample actions from the policy
sampled_actions = tf.random.categorical(log_probs, 1)
# Compute the negative log likelihood of the actions taken
negative_log_likelihood = tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=tf.one_hot(sampled_actions,
self.action_size))
# Compute the loss as the mean of the negative log likelihood multiplied by the rewards
loss = tf.reduce_mean(negative_log_likelihood * advantages)
# Compute the gradients of the loss with respect to the model's trainable weights
grads = tape.gradient(loss, self.policy_gradient_model.trainable_weights)
# Apply the gradients to the model's optimizer
self.policy_gradient_model.optimizer.apply_gradients(zip(grads, self.policy_gradient_model.trainable_weights))
# Keep track of the loss in TensorBoard
with tf.summary.create_file_writer(self.policy_gradient_log).as_default():
tf.summary.scalar('loss', loss, step=self.policy_gradient_model.optimizer.iterations)
def act(self, state, task, job='test'):
"""Method for getting the next action for the agent to take"""
if task == 'dqn':
if job == 'train' and np.random.rand() <= self.dqn_epsilon:
self.dqn_epsilon *= self.dqn_epsilon_decay
self.dqn_epsilon = max(self.dqn_epsilon, self.dqn_epsilon_min)
return random.randrange(self.action_size)
q_values = self.dqn_model.predict(state).reshape(-1)
return np.argmax(q_values)
elif task == 'ddqn':
if job == 'train' and np.random.rand() <= self.ddqn_epsilon:
self.ddqn_epsilon *= self.ddqn_epsilon_decay
self.ddqn_epsilon = max(self.ddqn_epsilon, self.ddqn_epsilon_min)
return random.randrange(self.action_size)
q_values = self.ddqn_model.predict(state).reshape(-1)
return np.argmax(q_values)
if task == 'actor_critic':
if job == 'train':
self.actor_critic_epsilon *= self.actor_critic_epsilon_decay
self.actor_critic_epsilon = max(self.actor_critic_epsilon, self.actor_critic_epsilon_min)
if np.random.rand() <= self.actor_critic_epsilon:
return random.randrange(self.action_size)
probs = self.actor_critic_model.predict(state).reshape(-1)
return np.argmax(probs)
elif task == 'policy_gradient':
if job == 'train':
self.policy_gradient_epsilon *= self.policy_gradient_alpha_decay
self.policy_gradient_epsilon = max(self.policy_gradient_epsilon, self.policy_gradient_alpha_min)
if np.random.rand() <= self.policy_gradient_epsilon:
return random.randrange(self.action_size)
probs = self.policy_gradient_model.predict(state).reshape(-1)
return np.argmax(probs)
def load(self, name, task, folder_name='model1'):
if os.path.exists(folder_name):
if task == 'dqn' and os.path.exists(f'{folder_name}/{name}_dqn.h5'):
self.dqn_model.load_weights(os.path.join(folder_name, f'{name}_dqn.h5'))
with open(f'{name}_{task}_memory.pickle', 'rb') as f:
self.dqn_memory = pickle.load(f)
elif task == 'ddqn' and os.path.exists(f'{folder_name}/{name}_ddqn.h5'):
self.ddqn_model.load_weights(os.path.join(folder_name, f'{name}_ddqn.h5'))
self.ddqn_target_model.load_weights(os.path.join(folder_name, f'{name}_ddqn.h5'))
with open(f'{folder_name}/{name}_{task}_memory.pickle', 'rb') as f:
self.ddqn_memory = pickle.load(f)
elif task == 'actor_critic' and os.path.exists(f'{folder_name}/{name}_actor_critic.h5'):
self.actor_critic_model.load_weights(os.path.join(folder_name, f'{name}_actor_critic.h5'))
with open(f'{name}_{task}_memory.pickle', 'rb') as f:
self.actor_critic_memory = pickle.load(f)
elif task == 'policy_gradient' and os.path.exists(f'{folder_name}/{name}_policy_gradient.h5'):
self.policy_gradient_model.load_weights(os.path.join(folder_name, f'{name}_policy_gradient.h5'))
with open(f'{name}_{task}_memory.pickle', 'rb') as f:
self.policy_gradient_memory = pickle.load(f)
else:
return
def save(self, name, task, folder_name='model1'):
# Check if the folder already exists
if not os.path.exists(folder_name):
# Create the folder if it does not exist
os.mkdir(folder_name)
if task == 'dqn':
self.dqn_model.save_weights(os.path.join(folder_name, f'{name}_dqn.h5'))
with open(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), 'wb') as f:
pickle.dump(self.dqn_memory, f)
# Verify if saving memory went right and the file is not corrupted
corrupted = self.verify_pickle(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), self.dqn_memory)
if corrupted:
self.save(name, task)
elif task == 'ddqn':
self.ddqn_model.save_weights(os.path.join(folder_name, f'{name}_ddqn.h5'))
self.ddqn_target_model.save_weights(os.path.join(folder_name, f'{name}_ddqn.h5'))
with open(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), 'wb') as f:
pickle.dump(self.ddqn_memory, f)
# Verify if saving memory went right and the file is not corrupted
corrupted = self.verify_pickle(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), self.ddqn_memory)
if corrupted:
self.save(name, task)
elif task == 'actor_critic':
self.actor_critic_model.save_weights(os.path.join(folder_name, f'{name}_actor_critic.h5'))
with open(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), 'wb') as f:
pickle.dump(self.actor_critic_memory, f)
# Verify if saving memory went right and the file is not corrupted
corrupted = self.verify_pickle(os.path.join(folder_name, f'{name}_{task}_memory.pickle'),
self.actor_critic_memory)
if corrupted:
self.save(name, task)
elif task == 'policy_gradient':
self.policy_gradient_model.save_weights(os.path.join(folder_name, f'{name}_policy_gradient.h5'))
with open(os.path.join(folder_name, f'{name}_{task}_memory.pickle'), 'wb') as f:
pickle.dump(self.policy_gradient_memory, f)
# Verify if saving memory went right and the file is not corrupted
corrupted = self.verify_pickle(os.path.join(folder_name, f'{name}_{task}_memory.pickle'),
self.policy_gradient_model)
if corrupted:
self.save(name, task)
def check_pickle_size(self, pickle_file, original_data):
# Use to check if trained model is bigger that the trained model
pickle_size = os.path.getsize(pickle_file)
original_size = sys.getsizeof(original_data)
if pickle_size < original_size:
return True
else:
return False
def verify_pickle(self, pickle_file, original_data):
# Use to verify if saving pickle file went fine
pickle_size = os.path.getsize(pickle_file)
original_size = sys.getsizeof(original_data)
if pickle_size < original_size:
return True
else:
return False
def normalize_data(self, data):
# Create a StandardScaler object
if data is None or len(data) == 0:
return 2
scaler = StandardScaler()
# Fit the scaler to the data
scaler.fit(data)
# Transform the data
normalized_data = scaler.transform(data)
return normalized_data
def calculate_reward(self, action, market, i, row, previous_row, slippage=0.05, transaction_cost=0.25):
"""Method for calculating the reward for a given action"""
# Get the current price and previous price
current_price = row['close']
previous_price = previous_row['close']
# Initialize the reward
reward = 0
# Check if the action is to buy
if action == 0:
# Calculate the reward based on the current and previous prices, slippage, and transaction cost
reward = (current_price - previous_price) - (current_price * slippage) - transaction_cost
# Check if the action is to sell
elif action == 1:
# Calculate the reward based on the current and previous prices, slippage, and transaction cost
reward = (previous_price - current_price) - (current_price * slippage) - transaction_cost
# Check if the action is to hold
elif action == 2:
# Calculate the reward based on the current and previous prices
reward = current_price - previous_price
return reward
def incorporate_other_data(self, other_data):
"""
Incorporates other relevant information into the state, such as technical indicators or fundamental data.
:param other_data: Numpy array containing the other relevant data.
"""
self.state = np.concatenate((self.state, other_data), axis=1)
def add_to_memory(self, task, state, action, reward, next_state, done):
# Add the transition to the memory for the specified task
if task == 'dqn':
self.add_dqn_transition(state, action, reward, next_state, done)
if task == 'ddqn':
self.add_ddqn_transition(state, action, reward, next_state, done)
elif task == 'actor_critic':
self.add_actor_critic_transition(state, action, reward, next_state, done)
elif task == 'policy_gradient':
self.add_policy_gradient_transition(state, action, reward, next_state, done)