-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.radial.basis.kernel.py
executable file
·163 lines (138 loc) · 4.96 KB
/
svm.radial.basis.kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
##------------------------------------------------------------------------##
########################## Load libraries ##################################
##------------------------------------------------------------------------##
import matplotlib.pyplot as plt
import cvxpy as cp
import numpy as np
from numpy.linalg import norm
##-------------------------------------------------------------------------##
############################ Functions ######################################
##-------------------------------------------------------------------------##
# Kernel definition
'''
In: x: (n, 1) - 1D vector
gamma: scalar value
Out: scalar value
'''
def kernel(x, gamma):
return np.exp(-gamma*(norm(x)**2))
# Gamma Matrix computation
'''
In: data: (n, None) - 2D vector - None: means that any value
gamma: scalar value - metric of kernel function
kernel : a function
Out: gam_matrix: (n,n)
'''
def gam_matrix(data, gamma , kernel):
nr_data = data.shape[0]
gam_matrix = np.array([kernel(data[i]-data[j],gamma) \
for i in range(nr_data) \
for j in range(nr_data)]) \
.reshape(nr_data,nr_data)
return gam_matrix
# optimization SVM problems
'''
In: data: (n,None) - 2D vector - None: means that any value - this value for gam_matrix
gamma: scalar number
kernel: function
gam_matrix: a function to return a matrix
Out: alpha: 1D vector - positive multipliers
support_vector: data points nearest the hyperplane
support_vector_y: label of support vectors
Notes:
Refer to cvxpy for formulation of QUADRATIC PROGRAMMING SOLVER
'''
def optmization_cv(data, gamma, kernel, gam_matrix, constantVal):
# Quadratic of objective function part
nr_data = data.shape[0]
P = np.outer(y,y)*gam_matrix(data, gamma , kernel)
q = -1*np.ones(nr_data)
# Constraints part
G = -1*np.eye(nr_data, nr_data)
N = np.eye(nr_data, nr_data)
h = np.zeros(nr_data)
k = constantVal*np.ones(nr_data)
A = np.ones(nr_data)*y
b = 0.0
# Define and solve the CVXPY problem.
x = cp.Variable(nr_data)
problem = cp.Problem(cp.Minimize((1/2)*cp.quad_form(x, P) + q.T@x),
[G@x <= h,
N@x <= k,
A@x == b])
problem.solve()
print("The optimal value is: ", problem.value)
print("A solution multipliers are: \n", x.value)
# multipliers of dua-form SVM optimization
alpha = x.value
alpha_positive = alpha[alpha>1.0e-8]
support_vector = X[alpha>1.0e-8]
support_vector_Y = y[alpha>1.0e-8]
return alpha_positive, support_vector, support_vector_Y
# compute intercept
'''
In: alpha: 1D vector - positive multipliers from optimization_cv()
sup_x: support vector machine - data points nearest the hyperplane
sup_y: label of support vector machine - label of data points near the separator
Out: intercept: scalar
'''
def compute_b(alfa, sup_x, sup_y, gamma):
# retrieve multipliers (alpha)
# support vector x
# support vector y
intercept=0.0
for I_X_DO in range(len(sup_vector)):
dummy = np.sum( (alfa[j]*sup_y[j]*kernel(sup_x[j]-sup_x[I_X_DO], gamma)) \
for j in range(len(sup_x)) )
dummy = sup_y[I_X_DO] - dummy
intercept += dummy
intercept = intercept/len(sup_x)
return intercept
# Compute the accuracy of all training samples
'''
In: data: (m,None) - 2D vector - None means any value
Out: y_pred : (m,1) - 1D vector
'''
def prediction(data):
y_pred=np.zeros(data.shape[0])
for I_X_DO in range(data.shape[0]):
y_pred[I_X_DO]=np.sign(np.sum(( alpha[j]*sup_vector_y[j]\
*kernel(sup_vector[j]-data[I_X_DO], gamma) \
for j in range(len(sup_vector)) )) + b)
return y_pred
## ----------------------------------------------------------------------------------------------##
####################################### MAIN PROGRAM ##############################################
## ----------------------------------------------------------------------------------------------##
# Constant value
constant_value=1
gamma=0.5
# Data input
'''
Data X must be in dimension (m,n) where:
m: number of training samples
n: number of featues, attributes or dimensions.
Label y must be a vector 1D with value -1 or 1.
'''
np.random.seed(0)
X = np.random.randn(26, 2)
Y_xor = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
y = np.array([1 if i else -1 for i in Y_xor ])
print('Actual Label: \n', y)
# support vectors x, y and multipliers
alpha, sup_vector, sup_vector_y = optmization_cv(X, gamma, kernel, gam_matrix, constant_value)
# compute intercept
b = compute_b(alpha, sup_vector, sup_vector_y, gamma)
# prediction
y_prediction = prediction(X)
print('Predicted Label: \n', y_prediction)
# prepare to plot contour
xx, yy = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100))
X_pred = np.c_[xx.ravel(), yy.ravel()]
Z = prediction(X_pred)
Z = Z.reshape(xx.shape)
contours = plt.contour(xx, yy, Z, levels=[0], colors = ['green'] ,linewidths=2, linestyles='dashed' )
# plot data in 2D
colors = np.where(y==1, 'r', 'b')
plt.scatter(X[:,0], X[:,1], c = colors)
plt.show()