-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSelf_Attention.py
45 lines (32 loc) · 1.69 KB
/
Self_Attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import spectral_norm
class Self_Attn(nn.Module):
def __init__(self,in_dim,activation):
super(Self_Attn,self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.query_conv = spectral_norm(nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1))
self.key_conv = spectral_norm(nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1))
self.value_conv = spectral_norm(nn.Conv2d(in_channels = in_dim , out_channels = in_dim//2 , kernel_size= 1))
self.atten_conv = spectral_norm(nn.Conv2d(in_channels=in_dim//2, out_channels=in_dim, kernel_size=1))
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
self.upscale = nn.Upsample(scale_factor=4, mode='nearest')
self.downscale = nn.MaxPool2d(3, stride=4)
def forward(self,x):
x_bar = self.downscale(x)
m_batchsize,C,width ,height = x_bar.size()
proj_query = self.query_conv(x_bar).view(m_batchsize,-1,width*height).permute(0,2,1)
proj_key = self.key_conv(x_bar).view(m_batchsize,-1,width*height)
energy = torch.bmm(proj_query,proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x_bar).view(m_batchsize,-1,width*height)
out = torch.bmm(proj_value,attention.permute(0,2,1) )
out = out.view(m_batchsize,C//2,width,height)
out = self.atten_conv(out)
out = self.upscale(out)
print ("Attention")
final = self.gamma*out + x
return final