-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathik_optim.py
70 lines (55 loc) · 2.93 KB
/
ik_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from scipy.optimize import minimize
import numpy as np
from pyquaternion import Quaternion
class CollisionIK:
def __init__(self, fk_handle, sim_handle, collision_inflation=0.01):
self.fk_handle = fk_handle
self.sim_handle = sim_handle
self.DOF = self.sim_handle.DOF
self.collision_inflation = collision_inflation
def groove(self, x, n, s, c, r):
return (-1)**n * np.exp(-(x-s)**2 / (2*c**2)) + r*(x-s)**4
def ee_match_obj(self, pg, qg, js):
eef_pose = self.fk_handle.link_fk(js, link=f'link_g{self.DOF}1')
pos_err = np.linalg.norm(eef_pose[:3,3]-pg)
pos_obj = self.groove(x=pos_err, n=1, s=0, c=0.2, r=5.0)
qg = Quaternion(qg).unit
qt = Quaternion(matrix=eef_pose[:3,:3]).unit
ori_err = Quaternion.absolute_distance(qg, qt)
ori_obj = self.groove(x=ori_err, n=1, s=0, c=0.2, r=5.0)
return pos_obj + ori_obj
def collision_avoid_obj(self, js):
curr_self_dist = self.sim_handle.self_collision_distance(collision_radius=0.1)
curr_env_dist = self.sim_handle.env_collision_distance(collision_radius=0.3)
off = self.collision_inflation
self_coll_obj = sum([1.8**(-dist+off) if (dist-off)<0 else 0 for dist in curr_self_dist])
env_coll_obj = sum([1.8**(-dist+off) if (dist-off)<0 else 0 for dist in curr_env_dist])
return self_coll_obj + env_coll_obj
def objective(self, pg, qg, js, disp=False):
self.sim_handle.marionette_robot(js)
obj_ee_match = self.ee_match_obj(pg, qg, js)
obj_coll_avoid = self.collision_avoid_obj(js)
net_obj = obj_ee_match + obj_coll_avoid
# if disp:
# print('--------------------------------')
# print(f'ee_match_obj: {obj_ee_match}')
# print(f'collision_avoid_obj: {obj_coll_avoid}')
# print(f'net_obj: {net_obj}')
# print('--------------------------------')
return net_obj
def refine_ik(self, pg, qg, init_js, max_gitr=5):
objective = lambda js: self.objective(pg, qg, js)
bounds = np.asarray([(joint.limit.lower, joint.limit.upper) for joint in self.fk_handle.actuated_joints])
options = {'maxiter':500, 'disp':False}
for gitr in range(max_gitr):
print(f'Iteration: {gitr+1}')
res = minimize(objective, init_js, method='SLSQP', bounds=bounds.tolist(), constraints=None, options=options)
soln_js = res.x
cost = self.objective(pg, qg, soln_js)
# -2 is the groove obj for perfect ee_match, 0 is the obj for any collision_avoid state, so best obj is -2
if cost < -1.9:
return soln_js
# if initial ik returns a bad guess then randomize init_js within bounds and retry
init_js = np.random.uniform(bounds[:,0], bounds[:,1])
# no solution could be found, probably the sampled robot is a bad one
return None