-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path7. CNN_AE_tf.py
345 lines (227 loc) · 8.7 KB
/
7. CNN_AE_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# coding: utf-8
# In[1]:
model_name = 'Copy7'
# In[2]:
get_ipython().magic(u'matplotlib inline')
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow.contrib.slim as slim
import random
import os
import sys
import pickle
# ### Read Data
# In[3]:
def load_data():
MNIST_M = np.load('MNIST_M.npy')
train_data, train_label = MNIST_M[0]
valid_data, valid_label = MNIST_M[1]
test_data, test_label = MNIST_M[2]
return train_data, train_label, valid_data,valid_label, test_data,test_label
# In[4]:
train_data, train_label, valid_data, valid_label, test_data, test_label = load_data()
# In[5]:
train_data.shape
# ### Define Model
# add pooling , and discrib why use it
# In[6]:
def max_unpool_2x2(x , size ):
inference = tf.image.resize_nearest_neighbor(x, size )
return inference
'''
x = tf.reshape(tf.constant(list(range(100*3*3*256))), [100,3,3,256])
y = max_unpool_2x2(x)
z = tf.shape(y)
k =tf.Print(z,[z])
sess=tf.InteractiveSession()
sess.run(k)
'''
# In[7]:
def lrelu(x, leaky=0.2): # leaky relu
return tf.maximum(x, leaky * x)
# In[8]:
def encoder(x): # input: (batch, height, width, channels)= (?, 28, 28, 3)
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.conv2d],
activation_fn = tf.nn.sigmoid,
kernel_size=[4,4],
padding='SAME',
stride=1):
#layer 1
enc1 = slim.conv2d(x , 64, scope='enc1') #(?, 28, 28, 3) --> (?, 28, 28, 64)
print('enc1', enc1.shape)
poo1 = slim.max_pool2d(enc1, [2,2], scope='poo1') #(?, 28, 28, 64) --> (?, 14, 14, 64)
print('poo1',poo1.shape)
#layer 2
enc2 = slim.batch_norm(slim.conv2d(poo1 , 128, scope='enc2'))# (?, 14, 14, 64)-->(?, 14, 14, 128)
print('enc2',enc2.shape)
poo2 = slim.max_pool2d(enc2, [2,2], scope='poo2') #(?, 14, 14, 128) --> (?, 7, 7, 128)
print('poo2',poo2.shape)
#layer 3
enc3 = slim.batch_norm(slim.conv2d(poo2 , 256, scope='enc3'))# (?, 7, 7, 128)--> (?, 7, 7, 256)
print('enc3',enc3.shape)
poo3 = slim.max_pool2d(enc3, [2,2], scope='poo3') #(?, 7, 7, 256) --> (?, 3, 3, 256)
print('poo3',poo3.shape)
#layer 4
enc4 = slim.batch_norm(slim.conv2d(poo3 , 512, scope='enc4'))#(?, 3, 3, 256) --> (?, 3, 3, 512)
print('enc4',enc4.shape)
return enc4
# In[9]:
def decoder(enc):
with tf.variable_scope('decoder'):
with slim.arg_scope([slim.conv2d_transpose],
activation_fn = tf.nn.sigmoid,
kernel_size=[4,4],
padding='SAME',
stride=1):
#layer 1
dec1 = slim.batch_norm(slim.conv2d_transpose(enc ,256, scope='dec1'))#(?, 3, 3, 256)
print('dec1',dec1.shape)
unp1 = max_unpool_2x2(dec1, [6,6])#(?, 6, 6, 256)
print('unp1',unp1.shape)
#layer 2
dec2 = slim.batch_norm(slim.conv2d_transpose(unp1 ,128, scope='dec2'))#(?, 6, 6, 128)
print('dec2',dec2.shape)
unp2 = max_unpool_2x2(dec2, [12,12]) #(?, 12, 12, 128)
print('unp2',unp2.shape)
#layer 3
dec3 = slim.batch_norm(slim.conv2d_transpose(unp2 ,64, scope='dec3')) #(?, 12, 12, 64)
print('dec3',dec3.shape)
unp3 = max_unpool_2x2(dec3, [24,24]) #(?, 24, 24, 64)
print('unp3',unp3.shape)
#layer 4
dec4 = slim.batch_norm(slim.conv2d_transpose(unp3 ,32, scope='dec4')) #(?, 24, 24, 32)
print('dec4',dec4.shape)
#layer 5 : resize
dec5 = slim.conv2d_transpose(dec4 , 3, scope='dec5',
kernel_size=[5,5],
padding='VALID',
activation_fn=tf.nn.tanh)
#(?, 24, 24, 32) --> (?, 28, 28, 3)
# 24x24 -> 28x28 using padding='VALID' and kernal_size=[5,5]
# tanh: contrain range between [-1,1]
print('dec5',dec5.shape)
return dec5
# ### Construct Graph
# In[10]:
data = tf.placeholder(tf.float32,[None ,28 ,28 ,3 ])
norm_data = tf.cast(data,tf.float32) / 127.5 -1 # int8--> float32, and contrain range between [-1,1]
# In[11]:
enc = encoder(norm_data)
rec = decoder(enc)
# In[12]:
loss = tf.reduce_mean((norm_data - rec)**2) # L-2 loss
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.minimize(loss)
# In[13]:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# ### Training & plot loss history
# In[14]:
def save_model(save_sess, save_path):
print('>> Save model...')
saver = tf.train.Saver()
saver.save(save_sess, save_path )
#path = 'ckpt/unpoolModel_epo_%s.ckpt' % 0
#save_model(sess, path)
# In[15]:
def sample_data (data, label):
# 0~9 indexes
idxs_list = []
for i in range(10):
idxs = np.where(label[:,i] == 1 )[0]
idxs_list.append( idxs )
#print (idxs_list[i].shape)
# 0~9 sample image
sample_data_ = []
for i in range(10):
idx = random.sample(idxs_list[i],1)
dt = data [idx]
sample_data_.append(dt)
sample_data_ = np.squeeze(sample_data_)
return idxs_list, sample_data_
def plot_10_images(data ,msg=''):
print(msg)
fig = plt.figure(figsize=(5,2) )
for i in range(10):
a=fig.add_subplot(2,5,i+1 )
plt.imshow(data[i])
a.set_axis_off()
plt.show()
plt.close()
# In[16]:
idxs_list, sample_data_ = sample_data (test_data, test_label)
plot_10_images(sample_data_ ,msg='Original sample image:')
# In[17]:
batch_size = 100
epochs = 30
loss_hist_train = []
loss_hist_valid = []
save_nb_epos = 3
for epoch in range(epochs):
# train
loss_ = []
for batch in range(train_data.shape[0] / batch_size):
batch_data = train_data[batch:batch+batch_size]
_,loss_i = sess.run([train_op , loss] ,feed_dict={data:batch_data})
loss_.append(loss_i)
loss_hist_train.append( np.mean(loss_) )
# valid
loss_valid = sess.run(loss ,feed_dict={data:valid_data})
loss_hist_valid.append( loss_valid )
# 後處理: 每3回合, 或最後一回合
if (epoch % save_nb_epos ==0) or (epoch == epochs-1):
# save model
path = 'ckpt/%s_unpoolModel_epo_%s.ckpt' % (model_name, epoch)
save_model(sess, path)
# Reconstructed Images (from Gaussian) during training
rec_ = sess.run(rec , feed_dict={data: sample_data_ })
rec_img = [ np.clip((r+1)*127.5 , 0,255).astype('uint8')for r in rec_ ]
plot_10_images(rec_img ,msg='Reconstructed sample image:')
print ('Epoch: %s , train_loss: %s , valid_loss: %s ' % (epoch, loss_hist_train[-1], loss_hist_valid[-1] ) )
# ### (a) Plot the reconstruction loss
# In[18]:
#epochs = 10
#loss_hist_train = range(epochs)
#loss_hist_valid = range(epochs)
# plot
f = plt.figure(1)
ax = f.add_subplot(111)
ax.plot(range(epochs),loss_hist_train,label='train loss')
ax.plot(range(epochs),loss_hist_valid,label='valid loss')
ax.set(xlabel='epoch',ylabel='loss')
ax.legend(loc='center right')
f.savefig('AE_loss_hist.png')
# In[19]:
# save loss
import csv
with open('AE_loss_hist.csv', 'wb') as csvfile:
w = csv.writer(csvfile)
w.writerow(['Epoch'] + range(epochs))
w.writerow(['loss_hist_train'] + loss_hist_train)
w.writerow(['loss_hist_valid'] + loss_hist_valid)
# ### (b) Plot 10 random samples of reconstruction image of test data and original image together
# In[ ]:
idxs_list, sample_data_ = sample_data (test_data, test_label)
plot_10_images(sample_data_ ,msg='Original sample image:')
# In[ ]:
# load sess
sess = tf.Session()
saver = tf.train.import_meta_graph('./ckpt/%s_unpoolModel_epo_%s.ckpt.meta' % (model_name, 3) )
saver.restore(sess,tf.train.latest_checkpoint('./ckpt/'))
# In[ ]:
# Reconstructed Images (from Gaussian) during training
rec_ = sess.run(rec , feed_dict={data: sample_data_ })
rec_img = [ np.clip((r)*255 , 0,255).astype('uint8')for r in rec_ ]
plot_10_images(rec_img ,msg='Reconstructed sample image:')
# ### Back up
# In[ ]:
rec_ = sess.run(rec , feed_dict={data:test_data})
# In[ ]:
rec_img = np.clip((rec_[2]+1)*127.5 , 0,255).astype('uint8')
# In[ ]:
plt.imshow(rec_img)
# In[ ]:
plt.imshow(test_data[2])
# In[ ]: