-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
37 lines (31 loc) · 1.58 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
%========================================================================================================%
%========== Error analysis - Sequential Decoding ( Fanos Algorithm for convolutional codes) ========== %
%========= Parameters =========%
%========= Generating Functions here =========%
g1 = [1 1 0 1 1 1 0 0 1];
g2 = [1 1 1 0 1 1 0 0 1];
%========= Given Threshhold value =========%
threshold = 5;
%========= No. of Memory Units (Registers) =========%
memory_bits = 11;
%========= No. of Input bits to be passed to encoder =========%
input_bits = 4;
%========= Maximum no of bits with errors in the encoded codeword for analysis =========%
max_errors = 6;
disp(['Input Bits to encoder :', num2str(input_bits)]);
disp(['Maximum Bits with errors in encoded codeword :', num2str(max_errors)]);
disp(['Analyzing Errors ...']);
%========= Calculating Percentage of Error deteced and corrected =========%
[per_detected, per_corrected] = error_percentage(input_bits, g1, g2, threshold, memory_bits, max_errors)
%========= Convert to matrix to plot as a double bar graph =========%
percentage = transpose([per_detected;per_corrected]);
%========= Bar Plot =========%
bar(1:max_errors, percentage)
legend('% of Detected Errors','% of Corrected Errors')
ylim([0 100])
title(['Error Analysis for ' num2str(input_bits) , ' bit Input'])
xlabel('No. of error bits')
ylabel('Percentage')
%print('BarPlot','-dpng')
%========= Save plot as image =========%
print(['error_analysis-', num2str(input_bits), 'bit_input-', num2str(max_errors), 'bit_errors'],'-dpng')