-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpascals-triangle-ii.rs
67 lines (64 loc) · 1.88 KB
/
pascals-triangle-ii.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// 119. Pascal's Triangle II
// 🟢 Easy
//
// https://leetcode.com/problems/pascals-triangle-ii/
//
// Tags: Array - Dynamic Programming
struct Solution;
impl Solution {
/// Generate the rows one at a time, each element is the sum of the elements
/// at i-1 + i positions in the previous row.
///
/// Time complexity: O(n^2) - We generate n rows, for each row, we visit
/// row_length elements.
/// Space complexity: O(n) - We use an extra vector of size n.
///
/// Runtime 0 ms Beats 100%
/// Memory 2.05 MB Beats 51.22%
pub fn get_row(row_index: i32) -> Vec<i32> {
let mut row = vec![1];
let mut a = 1;
let mut b;
for _ in 0..row_index as usize {
for i in 0..row.len() {
b = a;
a = row[i];
if i == 0 {
continue;
}
row[i] = a + b;
}
row.push(1);
}
row
}
/// Similar logic but we can save the extra variable if we iterate over the
/// elements on the row backwards.
///
/// Time complexity: O(n^2) - We generate n rows, for each row, we visit
/// row_length elements.
/// Space complexity: O(n) - We use an extra vector of size n.
///
/// Runtime 0 ms Beats 100%
/// Memory 2.14 MB Beats 24.39%
pub fn get_row_2(row_index: i32) -> Vec<i32> {
let n = row_index as usize;
let mut row = vec![0; n + 1];
row[0] = 1;
for i in 1..=n {
for j in (1..=i).rev() {
row[j] += row[j - 1];
}
}
row
}
}
// Tests.
fn main() {
let tests = [(3, vec![1, 3, 3, 1]), (0, vec![1]), (1, vec![1, 1])];
for t in tests {
assert_eq!(Solution::get_row(t.0), t.1);
assert_eq!(Solution::get_row_2(t.0), t.1);
}
println!("\x1b[92m» All tests passed!\x1b[0m")
}