-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path0450-delete-node-in-a-bst.rb
73 lines (60 loc) · 1.93 KB
/
0450-delete-node-in-a-bst.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# frozen_string_literal: true
# 450. Delete Node in a BST
# https://leetcode.com/problems/delete-node-in-a-bst
# Medium
=begin
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
Search for a node to remove.
If the node is found, delete the node.
Example 1:
Input: root = [5,3,6,2,4,null,7], key = 3
Output: [5,4,6,2,null,null,7]
Explanation: Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the above BST.
Please notice that another valid answer is [5,2,6,null,4,null,7] and it's also accepted.
Example 2:
Input: root = [5,3,6,2,4,null,7], key = 0
Output: [5,3,6,2,4,null,7]
Explanation: The tree does not contain a node with value = 0.
Example 3:
Input: root = [], key = 0
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 104].
-105 <= Node.val <= 105
Each node has a unique value.
root is a valid binary search tree.
-105 <= key <= 105
=end
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root
# @param {Integer} key
# @return {TreeNode}
def delete_node(root, key)
return root if !root
if root.val == key
return if !root.right && !root.left
return root.right if !root.left
return root.left if !root.right
right_node = root.right
right_node = right_node.left while right_node.left
root.right = delete_node(root.right, right_node.val)
right_node.left = root.left
right_node.right = root.right
return right_node
elsif root.val < key
root.right = delete_node(root.right, key)
else
root.left = delete_node(root.left, key)
end
root
end