-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path0790-domino-and-tromino-tiling.rb
51 lines (41 loc) · 1.29 KB
/
0790-domino-and-tromino-tiling.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# frozen_string_literal: true
# 790. Domino and Tromino Tiling
# https://leetcode.com/problems/domino-and-tromino-tiling
# Medium
=begin
You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.
Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 109 + 7.
In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
Example 1:
Input: n = 3
Output: 5
Explanation: The five different ways are show above.
Example 2:
Input: n = 1
Output: 1
Constraints:
1 <= n <= 1000
=end
# @param {Integer} n
# @return {Integer}
MOD = 10**9 + 7
def num_tilings(n)
dp = Array.new(3) { Array.new(2, 0) }
dp[1] = [1, 1]
dp[2] = [2, 2]
(3..n).each do |i|
dp[i % 3][0] = dp[(i - 1) % 3][0] + dp[(i - 2) % 3][0] + 2 * dp[(i - 2) % 3][1]
dp[i % 3][1] = dp[(i - 1) % 3][0] + dp[(i - 1) % 3][1]
end
dp[n % 3][0] % MOD
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_num_tilings < Test::Unit::TestCase
def test_
assert_equal 5, num_tilings(3)
assert_equal 1, num_tilings(1)
end
end