-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path0862-shortest-subarray-with-sum-at-least-k.rb
71 lines (58 loc) · 1.43 KB
/
0862-shortest-subarray-with-sum-at-least-k.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# frozen_string_literal: true
# 862. Shortest Subarray with Sum at Least K
# https://leetcode.com/problems/shortest-subarray-with-sum-at-least-k
# Hard
=begin
Given an integer array nums and an integer k, return the length of the shortest non-empty subarray of nums with a sum of at least k. If there is no such subarray, return -1.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1], k = 1
Output: 1
Example 2:
Input: nums = [1,2], k = 4
Output: -1
Example 3:
Input: nums = [2,-1,2], k = 3
Output: 3
Constraints:
* 1 <= nums.length <= 105
* -105 <= nums[i] <= 105
* 1 <= k <= 109
=end
# @param {Integer[]} nums
# @param {Integer} k
# @return {Integer}
def shortest_subarray(nums, k)
n = nums.length
sum = Array.new(n + 1, 0)
n.times do |i|
sum[i + 1] = sum[i] + nums[i]
end
q = Array.new(n + 1)
l = 0
r = 0
min_length = n + 1
sum.length.times do |i|
while r > l && sum[i] >= sum[q[l]] + k
min_length = [min_length, i - q[l]].min
l += 1
end
while r > l && sum[i] <= sum[q[r - 1]]
r -= 1
end
q[r] = i
r += 1
end
min_length <= n ? min_length : -1
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_shortest_subarray < Test::Unit::TestCase
def test_
assert_equal 1, shortest_subarray([1], 1)
assert_equal(-1, shortest_subarray([1, 2], 4))
assert_equal 3, shortest_subarray([2, -1, 2], 3)
end
end