-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path1489-find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree.rb
76 lines (68 loc) · 3.14 KB
/
1489-find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# frozen_string_literal: true
# 1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree
# Hard
# https://leetcode.com/problems/find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree
=begin
Given a weighted undirected connected graph with n vertices numbered from 0 to n - 1, and an array edges where edges[i] = [ai, bi, weighti] represents a bidirectional and weighted edge between nodes ai and bi. A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.
Find all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST). An MST edge whose deletion from the graph would cause the MST weight to increase is called a critical edge. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.
Note that you can return the indices of the edges in any order.
Example 1:
Input: n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]
Output: [[0,1],[2,3,4,5]]
Explanation: The figure above describes the graph.
The following figure shows all the possible MSTs:
Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.
Example 2:
Input: n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
Output: [[],[0,1,2,3]]
Explanation: We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.
Constraints:
* 2 <= n <= 100
* 1 <= edges.length <= min(200, n * (n - 1) / 2)
* edges[i].length == 3
* 0 <= ai < bi < n
* 1 <= weighti <= 1000
* All pairs (ai, bi) are distinct.
=end
# @param {Integer} n
# @param {Integer[][]} edges
# @return {Integer[][]}
def find_critical_and_pseudo_critical_edges(n, e)
return [[*n.pred.times], []] if e.size == n.pred
e.each_with_index { _1 << _2 } .sort_by! { _1[-2] }
msu = -> s, sf do
p, c, r = n.times.to_a, [1] * n, 0
f = -> x { p[x] == x ? x : (p[x] = f.(p[x])) }
u = Proc.new do | a, b, x, i |
next if (ra = f.(a)) == (rb = f.(b))
ra, rb = rb, ra if c[ra] < c[rb]
r += x; p[rb] = ra
return r if (c[ra] += c[rb]) == n
end
u.(*e[s]) if !sf && s < e.size
s = e[s].last if s < e.size
e.each do | a, b, x, i |
next if i == s
u.(a, b, x, i)
end
1e6
end
t, c, p = msu.(200, false), [], []
e.size.times do | s |
i = e[s].last
c << i if t < msu.(s, true)
p << i if t == msu.(s, false)
end
[c, p - c]
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_length_of_longest_substring < Test::Unit::TestCase
def test_
assert_equal [[0, 1], [2, 3, 4, 5]], find_critical_and_pseudo_critical_edges(5, [[0, 1, 1], [1, 2, 1], [2, 3, 2], [0, 3, 2], [0, 4, 3], [3, 4, 3], [1, 4, 6]])
assert_equal [[], [0, 1, 2, 3]], find_critical_and_pseudo_critical_edges(4, [[0, 1, 1], [1, 2, 1], [2, 3, 1], [0, 3, 1]])
end
end