-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert_dr_spaam_output.py
57 lines (45 loc) · 1.36 KB
/
convert_dr_spaam_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import math
import h5py
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
#DIR_NAME = 'drow_on_frog'
#DIR_NAME = 'dr_spaam_1_on_frog'
DIR_NAME = 'dr_spaam_5_on_frog'
NUM_SCANS = 50088
SCORE_THRESHOLD = 0.01
SCAN_FAR = 10.0
all_people = []
all_people_idx = []
all_people_num = []
total_people_added = 0
for i in tqdm(range(NUM_SCANS)):
with open(f'test/{DIR_NAME}/{i:06d}.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
cur_people = []
for l in lines:
l = l.strip(' \t\r\n')
if l == '': continue
l = l.split(' ')
c_score = float(l[-1])
c_x = float(l[-5])
c_y = float(l[-4])
c_dist = np.hypot(c_x, c_y)
if c_score < SCORE_THRESHOLD or c_dist > SCAN_FAR: continue
cur_people.append((c_score, c_x, c_y))
all_people_idx.append(total_people_added)
all_people_num.append(len(cur_people))
total_people_added += len(cur_people)
if len(cur_people)==0:
continue
cur_people = np.array(cur_people, dtype=np.float32)
cur_people = cur_people[np.argsort(-cur_people[:,0],kind='stable'),:]
all_people.append(cur_people)
all_people = np.concatenate(all_people, axis=0)
all_people_idx = np.array(all_people_idx, dtype=np.uint32)
all_people_num = np.array(all_people_num, dtype=np.uint32)
print("Saving results...")
np.savez_compressed(f'test/{DIR_NAME}.npz',
people=all_people,
idxs=all_people_idx,
nums=all_people_num)