-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatching.py
258 lines (204 loc) · 8.78 KB
/
matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from typing import List, Tuple
import numpy as np
import scipy
from scipy.spatial.distance import cdist
from supervision.detection.utils import box_iou_batch
from Impr_Assoc_Track import kalman_filter
from scipy.optimize import linear_sum_assignment
def merge_matches(m1, m2, shape):
O,P,Q = shape
m1 = np.asarray(m1)
m2 = np.asarray(m2)
M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))
mask = M1*M2
match = mask.nonzero()
match = list(zip(match[0], match[1]))
unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))
return match, unmatched_O, unmatched_Q
def _indices_to_matches(cost_matrix, indices, thresh):
matched_cost = cost_matrix[tuple(zip(*indices))]
matched_mask = (matched_cost <= thresh)
matches = indices[matched_mask]
unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))
return matches, unmatched_a, unmatched_b
def indices_to_matches(
cost_matrix: np.ndarray, indices: np.ndarray, thresh: float
) -> Tuple[np.ndarray, tuple, tuple]:
matched_cost = cost_matrix[tuple(zip(*indices))]
matched_mask = matched_cost <= thresh
matches = indices[matched_mask]
unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))
return matches, unmatched_a, unmatched_b
def linear_assignment(
cost_matrix: np.ndarray, thresh: float
) -> [np.ndarray, Tuple[int], Tuple[int, int]]:
if cost_matrix.size == 0:
return (
np.empty((0, 2), dtype=int),
tuple(range(cost_matrix.shape[0])),
tuple(range(cost_matrix.shape[1])),
)
cost_matrix[cost_matrix > thresh] = thresh + 1e-4
row_ind, col_ind = linear_sum_assignment(cost_matrix)
indices = np.column_stack((row_ind, col_ind))
return indices_to_matches(cost_matrix, indices, thresh)
def ious(atlbrs, btlbrs):
"""
Compute cost based on IoU
:type atlbrs: list[tlbr] | np.ndarray
:type atlbrs: list[tlbr] | np.ndarray
:rtype ious np.ndarray
"""
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=float)
if ious.size == 0:
return ious
ious = box_iou_batch(
np.ascontiguousarray(atlbrs, dtype=float),
np.ascontiguousarray(btlbrs, dtype=float)
)
return ious
def d_iou_distance(atracks, btracks):
if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks]
_ious = ious(atlbrs, btlbrs)
# print(_ious.shape)
atlbrs = np.tile(np.atleast_2d(np.ascontiguousarray(atlbrs, dtype=float)), len(btracks)).reshape((len(atracks), len(btracks), 4))
# print(f"len atracks: {len(atracks)}")
# print(f"shape atlbrs: {atlbrs.shape}")
btlbrs = np.tile(np.atleast_2d(np.ascontiguousarray(btlbrs, dtype=float)), len(atracks)).reshape((len(btracks), len(atracks), 4))
# print(f"len btracks: {len(btracks)}")
# print(f"shape btlbrs: {btlbrs.shape}")
if _ious.size == 0:
return _ious
a_centers = (atlbrs[:,:,2:] - atlbrs[:,:,:2])/2 + atlbrs[:,:,:2]
b_centers = np.swapaxes((btlbrs[:,:,2:] - btlbrs[:,:,:2])/2 + btlbrs[:,:,:2], 0, 1)
# print(f"a_centers: {a_centers}")
# print(f"b_centers: {b_centers}")
# calc the euclidean dist between a's and b's centers
diff_vect = a_centers - b_centers
# print(f"diff: {diff_vect}")
center_dist_sq = np.sum(np.square(diff_vect), axis=2)
# print(f"sq: {center_dist_sq}")
top_left = np.minimum(atlbrs[:,:, :2], np.swapaxes(btlbrs[:,:, :2], 0, 1))
# print(f"top left: {top_left}")
bottom_right = np.maximum(atlbrs[:,:, 2:], np.swapaxes(btlbrs[:,:, 2:], 0, 1))
# print(f"bot right: {bottom_right}")
# calc the diagonal length from the very top left to the very bottom right
diff_vect = bottom_right - top_left
# print(f"diff of corners: {diff_vect}")
outside_dist_sq = np.sum(np.square(diff_vect), axis=2)
# print(f"sq corners: {outside_dist_sq}")
# extra loss term to add to iou. D_IOU
r = center_dist_sq/outside_dist_sq
# print(f"r values: {r}")
return 1-_ious+r
def tlbr_expand(tlbr, scale=1.2):
w = tlbr[2] - tlbr[0]
h = tlbr[3] - tlbr[1]
half_scale = 0.5 * scale
tlbr[0] -= half_scale * w
tlbr[1] -= half_scale * h
tlbr[2] += half_scale * w
tlbr[3] += half_scale * h
return tlbr
def iou_distance(atracks, btracks):
"""
Compute cost based on IoU
:type atracks: list[STrack]
:type btracks: list[STrack]
:rtype cost_matrix np.ndarray
"""
if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks]
_ious = ious(atlbrs, btlbrs)
cost_matrix = 1 - _ious
return cost_matrix
def v_iou_distance(atracks, btracks):
"""
Compute cost based on IoU
:type atracks: list[STrack]
:type btracks: list[STrack]
:rtype cost_matrix np.ndarray
"""
if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in atracks]
btlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in btracks]
_ious = ious(atlbrs, btlbrs)
cost_matrix = 1 - _ious
return cost_matrix
def embedding_distance(tracks, detections, metric='cosine'):
"""
:param tracks: list[STrack]
:param detections: list[BaseTrack]
:param metric:
:return: cost_matrix np.ndarray
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=float)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=float)
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=float)
# print(det_features.shape, track_features.shape)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # / 2.0 # Nomalized features
return cost_matrix
def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
if cost_matrix.size == 0:
return cost_matrix
gating_dim = 2 if only_position else 4
gating_threshold = kalman_filter.chi2inv95[gating_dim]
# measurements = np.asarray([det.to_xyah() for det in detections])
measurements = np.asarray([det.to_xywh() for det in detections])
for row, track in enumerate(tracks):
gating_distance = kf.gating_distance(
track.mean, track.covariance, measurements, only_position)
cost_matrix[row, gating_distance > gating_threshold] = np.inf
return cost_matrix
def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98):
if cost_matrix.size == 0:
return cost_matrix
gating_dim = 2 if only_position else 4
gating_threshold = kalman_filter.chi2inv95[gating_dim]
# measurements = np.asarray([det.to_xyah() for det in detections])
measurements = np.asarray([det.to_xywh() for det in detections])
for row, track in enumerate(tracks):
gating_distance = kf.gating_distance(
track.mean, track.covariance, measurements, only_position, metric='maha')
cost_matrix[row, gating_distance > gating_threshold] = np.inf
cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance
return cost_matrix
def fuse_iou(cost_matrix, tracks, detections):
if cost_matrix.size == 0:
return cost_matrix
reid_sim = 1 - cost_matrix
iou_dist = iou_distance(tracks, detections)
iou_sim = 1 - iou_dist
fuse_sim = reid_sim * (1 + iou_sim) / 2
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
#fuse_sim = fuse_sim * (1 + det_scores) / 2
fuse_cost = 1 - fuse_sim
return fuse_cost
def fuse_score(cost_matrix, detections):
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
fuse_cost = 1 - fuse_sim
return fuse_cost