-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrainer.py
186 lines (162 loc) · 7.57 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import librosa
import time
import warnings
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.rnn import PackedSequence
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from dataset import logger
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class TasNET_trainer(object):
def __init__(self,
TasNET,
checkpoint="checkpoint",
optimizer="adam",
lr=1e-5,
momentum=0.9,
weight_decay=0,
num_epoches=20,
clip_norm=False,
sr=8000):
self.TasNET = TasNET
logger.info("TasNET:\n{}".format(self.TasNET))
if type(lr) is str:
lr = float(lr)
logger.info("Transfrom lr from str to float => {}".format(lr))
self.optimizer = torch.optim.Adam(
self.TasNET.parameters(),
lr=lr,
weight_decay=weight_decay)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,
'min', factor=0.5, patience=3,verbose=True)
if torch.cuda.device_count() > 1:
self.TasNET = nn.DataParallel(self.TasNET, device_ids=[0,1,2,3])
self.TasNET.to(device)
self.checkpoint = checkpoint
self.num_epoches = num_epoches
self.clip_norm = clip_norm
self.sr = sr
self.writer = SummaryWriter('./log')
if self.clip_norm:
logger.info("Clip gradient by 2-norm {}".format(clip_norm))
if not os.path.exists(self.checkpoint):
os.makedirs(checkpoint)
def SISNR(self, output, target):
#output:(128,4000)
batchsize = np.shape(output)[0]
target = target.view(batchsize,-1)
output = output - torch.mean(output,1,keepdim=True)
target = target - torch.mean(target,1,keepdim=True)
s_shat = torch.sum(output*target,1,keepdim=True)
s_2 = torch.sum(target**2,1,keepdim=True)
s_target = (s_shat / s_2) * target #(128,4000)
e_noise = output - s_target
return 10*torch.log10(torch.sum(e_noise**2,1,keepdim=True)\
/torch.sum(s_target**2,1,keepdim=True)) #(128,1)
def loss(self,output1,output2,target1,target2):
#PIT loss
loss1 = self.SISNR(output1,target1)+self.SISNR(output2,target2)
loss2 = self.SISNR(output1,target2)+self.SISNR(output2,target1)
min = torch.min(loss1, loss2) #(128,1)
return torch.mean(min) #scale
def train(self, dataloader, epoch):
self.TasNET.train()
logger.info("Training...")
tot_loss = 0
tot_batch = len(dataloader)
batch_indx = epoch*tot_batch
for mix_speech, speech1, speech2 in dataloader:
self.optimizer.zero_grad()
if torch.cuda.is_available():
mix_speech= mix_speech.cuda()
speech1 = speech1.cuda()
speech2 = speech2.cuda()
mix_speech = Variable(mix_speech)
speech1 = Variable(speech1)
speech2 = Variable(speech2)
output1, output2 = self.TasNET(mix_speech)
cur_loss = self.loss(output1,output2,speech1,speech2)
tot_loss += cur_loss.item()
#write summary
batch_indx += 1
self.writer.add_scalar('train_loss', cur_loss, batch_indx)
cur_loss.backward()
if self.clip_norm:
nn.utils.clip_grad_norm_(self.TasNET.parameters(),
self.clip_norm)
self.optimizer.step()
return tot_loss / tot_batch, tot_batch
def validate(self, dataloader, epoch):
"""one epoch"""
self.TasNET.eval()
logger.info("Evaluating...")
tot_loss = 0
tot_batch = len(dataloader)
batch_indx = epoch*tot_batch
#print(tot_batch)
with torch.no_grad():
for mix_speech,speech1,speech2 in dataloader:
if torch.cuda.is_available():
mix_speech = mix_speech.cuda()
speech1 = speech1.cuda()
speech2 = speech2.cuda()
mix_speech = Variable(mix_speech)
speech1 = Variable(speech1)
speech2 = Variable(speech2)
output1, output2 = self.TasNET(mix_speech)
cur_loss = self.loss(output1,output2,speech1,speech2)
tot_loss += cur_loss.item()
#write summary
batch_indx += 1
self.writer.add_scalar('dev_loss', cur_loss, batch_indx)
return tot_loss / tot_batch, tot_batch
def run(self, train_set, dev_set):
init_loss, _ = self.validate(dev_set,0)
logger.info("Start training for {} epoches".format(self.num_epoches))
logger.info("Epoch {:2d}: dev loss ={:.4e}".format(0, init_loss))
torch.save(self.TasNET.state_dict(), os.path.join(self.checkpoint, 'TasNET_0.pkl'))
for epoch in range(1, self.num_epoches+1):
train_start = time.time()
train_loss, train_num_batch = self.train(train_set, epoch)
valid_start = time.time()
valid_loss, valid_num_batch = self.validate(dev_set, epoch)
valid_end = time.time()
self.scheduler.step(valid_loss)
logger.info(
"Epoch {:2d}: train loss = {:.4e}({:.2f}s/{:d}) |"
" dev loss= {:.4e}({:.2f}s/{:d})".format(
epoch, train_loss, valid_start - train_start,
train_num_batch, valid_loss, valid_end - valid_start,
valid_num_batch))
save_path = os.path.join(
self.checkpoint, "TasNET_{:d}_trainloss_{:.4e}_valloss_{:.4e}.pkl".format(
epoch, train_loss, valid_loss))
torch.save(self.TasNET.state_dict(), save_path)
logger.info("Training for {} epoches done!".format(self.num_epoches))
def rerun(self, train_set, dev_set, model_path, epoch_done):
self.TasNET.load_state_dict(torch.load(model_path))
init_loss, _ = self.validate(dev_set,epoch_done)
logger.info("Start training for {} epoches".format(self.num_epoches))
logger.info("Epoch {:2d}: dev loss ={:.4e}".format(0, init_loss))
torch.save(self.TasNET.state_dict(), os.path.join(self.checkpoint, 'TasNET_0.pkl'))
for epoch in range(epoch_done, self.num_epoches+1):
train_start = time.time()
train_loss, train_num_batch = self.train(train_set,epoch)
valid_start = time.time()
valid_loss, valid_num_batch = self.validate(dev_set,epoch)
valid_end = time.time()
self.scheduler.step(valid_loss)
logger.info(
"Epoch {:2d}: train loss = {:.4e}({:.2f}s/{:d}) |"
" dev loss= {:.4e}({:.2f}s/{:d})".format(
epoch, train_loss, valid_start - train_start,
train_num_batch, valid_loss, valid_end - valid_start,
valid_num_batch))
save_path = os.path.join(
self.checkpoint, "TasNET_{:d}_trainloss_{:.4e}_valloss_{:.4e}.pkl".format(
epoch, train_loss, valid_loss))
torch.save(self.TasNET.state_dict(), save_path)
logger.info("Training for {} epoches done!".format(self.num_epoches))