-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisc_model.py
58 lines (44 loc) · 1.5 KB
/
disc_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 4, stride, bias=False, padding_mode="reflect"),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2),
)
def forward(self, x):
return self.conv(x)
class Discriminator(nn.Module):
def __init__(self,
in_channels=3,
features=[64, 128, 256, 512]):
super().__init__()
self.initial = nn.Sequential(
nn.Conv2d(in_channels*2, features[0], kernel_size=4, stride=2, padding=1, padding_mode="reflect"),
nn.LeakyReLU(0.2),
)
layers = []
in_channels = features[0]
for feature in features[1:]:
layers.append(
CNNBlock(in_channels, feature, stride=1 if feature == features[-1] else 2),
)
in_channels = feature
layers.append(
nn.Conv2d(in_channels, 1, kernel_size=4, stride=1, padding=1, padding_mode="reflect")
)
self.model = nn.Sequential(*layers)
def forward(self, x, y):
x = torch.cat([x,y], dim=1)
x = self.initial(x)
return self.model(x)
def test():
x = torch.randn(1, 3, 256, 256)
y = torch.randn(1, 3, 256, 256)
model = Discriminator()
output = model(x, y)
print(output.shape)
if __name__ == "__main__":
test()