-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
76 lines (55 loc) · 2.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
from utils import save_checkpoint, load_checkpoint, save_some_examples
import torch.nn as nn
import torch.optim as optim
import config
from dataset import MapDataset
from gen_model import Generator
from disc_model import Discriminator
from torch.utils.data import DataLoader
from tqdm import tqdm
def train_fn(disc, gen, loader, opt_disc, opt_gen, l1, bce, g_scaler, d_scaler):
loop = tqdm(loader, leave=True)
for idx, (x, y) in enumerate(loop):
x, y = x.to(config.DEVICE), y.to(config.DEVICE)
with torch.cuda.amp.autocast():
y_fake = gen(x)
D_real = disc(x, y)
D_fake = disc(x, y_fake.detach())
D_real_loss = bce(D_real, torch.ones_like(D_real))
D_fake_loss = bce(D_fake, torch.zeros_like(D_fake))
D_loss = (D_real_loss + D_fake_loss) / 2
disc.zero_grad()
d_scaler.scale(D_loss).backward()
d_scaler.step(opt_disc)
d_scaler.update()
with torch.cuda.amp.autocast():
D_fake = disc(x, y_fake)
G_fake_loss = bce(D_fake, torch.ones_like(D_fake))
L1 = l1(y_fake, y) * config.L1_LAMBDA
G_loss = G_fake_loss + L1
opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_disc)
g_scaler.update()
def main():
disc = Discriminator(in_channels=3).to(config.DEVICE)
gen = Generator(in_channels=3).to(config.DEVICE)
opt_disc = optim.Adam(disc.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999))
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999))
BCE = nn.BCEWithLogitsLoss()
L1_LOSS = nn.L1Loss()
train_dataset = MapDataset(root_dir="data/maps/maps/train")
train_loader = DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True, num_workers=config.NUM_WORKERS)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler = torch.cuda.amp.GradScaler()
val_dataset = MapDataset(root_dir="data/maps/maps/val")
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
for epoch in range(config.NUM_EPOCHS):
train_fn(disc, gen, train_loader, opt_disc, opt_gen, L1_LOSS, BCE, g_scaler, d_scaler)
if config.SAVE_MODEL and epoch % 5 == 0:
save_checkpoint(gen, opt_gen, filename=config.CHECKPOINT_GEN)
save_checkpoint(disc, opt_gen, filename=config.CHECKPOINT_DISC)
save_some_examples(gen, val_loader, epoch, folder="evaluation")
if __name__ == '__main__':
main()