-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbank_resource.py
73 lines (55 loc) · 2.71 KB
/
bank_resource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
from fuzzywuzzy import process
import pandas as pd
from utils import _setup_debug_logger
# Source of CSV file: https://github.com/razorpay/ifsc/releases/tag/1.4.9
df1 = pd.read_csv('IFSC.csv', delimiter=',', index_col=False,) # encoding="ISO-8859–1")
logger = _setup_debug_logger(__name__)
class BankResource:
@staticmethod
def search(bank_query: str, branch_query: str):
"""
:param bank_query: Bank string. Example: "icici", "hdfc bank"
:param branch_query: Branch address string. Example:
:return: DF row/object of the matching branch with IFSC & MICR code
Step1: Load CSV to a DF
Step2: Slice the results to the substring i.e. bank_string
Step3:
3.1) Fuzzy search the BRANCH col. with branch_query. BRANCH_NAME
3.2) Fuzzy search the ADDRESS col. with branch_query. ADDRESS
3.3) Compare the fuzzy search score of 3.1 and 3.2. If both scores are equal or BRANCH_NAME > ADDRESS,
we assume the BRANCH_NAME row to be returned else ADDRESS row.
Order of CSV Headers: ['IFSC', 'BRANCH', 'CENTRE', 'DISTRICT', 'STATE', 'ADDRESS', 'CONTACT',
'IMPS', 'RTGS', 'CITY', 'NEFT', 'MICR']
"""
# Step 1: Find the branch from `BANK` column
# bank_dict = process.extractBests('ICIC', df1.BANK.to_dict(), score_cutoff=90, limit=None)
# bank_branches = df1.loc[[l[2] for l in bank_dict]]
# OR =>
# PS: The following will fail if the bank name provided exceeds the bank name we have
bank_branches = df1[df1['BANK'].str.lower().str.contains(bank_query.lower())]
print('===== ALL BRANCHES OF BANK ======'.center(10))
print(bank_branches)
# FYI to convert whole column to lower case: bank_branches.ADDRESS.str.lower()
branch_matches = process.extractBests(branch_query, bank_branches.BRANCH.to_dict()) # , limit=2)
address_matches = process.extractBests(branch_query, bank_branches.ADDRESS.to_dict())
best_branch = branch_matches[0]
best_address = address_matches[0]
print(best_address, best_branch)
if best_branch[1] == best_address[1]:
optimal_result = best_branch
elif best_branch[1] > best_address[1]:
optimal_result = best_branch
else:
optimal_result = best_address
result_index = optimal_result[2]
result_row = bank_branches.loc[result_index]
print('==== Queried BRANCH ===='.center(10))
print(result_row)
logger.error("{}".format(result_row))
return result_row
#
# _Q_BANK_ = 'bank of baroda'
# _Q_BRANCH_ = 'KALWAR ROAD, RAJASTHAN'
#
# bank_branch_search(_Q_BANK_, _Q_BRANCH_)