-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
503 lines (399 loc) · 15.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import numpy as np
import os
import cv2
import PIL.Image as Image
from matplotlib import pylab as P
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import Dataset
import torchvision
import pandas as pd
import seaborn as sb
import datetime
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from pathlib import Path
import random
from efficientnet_pytorch import EfficientNet
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transformer = torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
classes = ('benign', 'melanoma')
# Defining transforms for the training, validation, and testing sets
training_transforms = torchvision.transforms.Compose(
[torchvision.transforms.RandomRotation(30),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomVerticalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
validation_transforms = torchvision.transforms.Compose(
[torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(256),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
testing_transforms = torchvision.transforms.Compose(
[torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(256),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
# Creating seeds to make results reproducible
def seed_everything(seed_value):
np.random.seed(seed_value)
random.seed(seed_value)
torch.manual_seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def process_image(image_path):
'''
Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
# Process a PIL image for use in a PyTorch model
pil_image = Image.open(image_path)
# Resize
if pil_image.size[0] > pil_image.size[1]:
pil_image.thumbnail((5000, 256))
else:
pil_image.thumbnail((256, 5000))
# Crop
left_margin = (pil_image.width-256)/2
bottom_margin = (pil_image.height-256)/2
right_margin = left_margin + 256
top_margin = bottom_margin + 256
pil_image = pil_image.crop(
(left_margin, bottom_margin, right_margin, top_margin))
# Normalize
np_image = np.array(pil_image)/255
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
np_image = (np_image - mean) / std
# PyTorch expects the color channel to be the
# first dimension but it's the third dimension
# in the PIL image and Numpy array
# Color channel needs to be first;
# retain the order of the other two dimensions.
np_image = np_image.transpose((2, 0, 1))
return np_image
def imshow(image, ax=None, title=None):
if ax is None:
_, ax = plt.subplots()
# PyTorch tensors assume the color channel is the first dimension
# but matplotlib assumes is the third dimension
image = image.transpose((1, 2, 0))
# Undo preprocessing
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
if title is not None:
ax.set_title(title)
# Image needs to be clipped between 0 and 1
# or it looks like noise when displayed
image = np.clip(image, 0, 1)
ax.imshow(image)
return ax
def predict(image_path, model, topk=1):
# just 2 classes from 1 single output
'''
Predict the class (or classes) of an image using
a trained deep learning model.
'''
image = process_image(image_path)
# Convert image to PyTorch tensor first
image = torch.from_numpy(image).type(torch.cuda.FloatTensor)
# Returns a new tensor with a dimension of size
# one inserted at the specified position.
image = image.unsqueeze(0)
output = model(image)
probabilities = torch.sigmoid(output)
# Probabilities and the indices of those probabilities
# corresponding to the classes
top_probabilities, top_indices = probabilities.topk(topk)
# Convert to lists
top_probabilities = top_probabilities.detach().type(
torch.FloatTensor).numpy().tolist()[0]
top_indices = top_indices.detach().type(
torch.FloatTensor).numpy().tolist()[0]
top_classes = []
if probabilities > 0.5:
top_classes.append("Melanoma")
else:
top_classes.append("Benign")
return top_probabilities, top_classes
def images_to_probs(net, images):
'''
Generates predictions and corresponding probabilities from a trained
network and a list of images
'''
output = net(images)
# convert output probabilities to predicted class
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.cpu().numpy())
return preds, [
F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]
def renormalize(tensor):
minFrom = tensor.min()
maxFrom = tensor.max()
minTo = 0
maxTo = 1
return minTo + (maxTo - minTo) * ((tensor - minFrom) / (maxFrom - minFrom))
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
# img = img / 2 + 0.5 # unnormalize
npimg = renormalize(img).cpu().numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
def plot_classes_preds(net, images, labels):
'''
Generates matplotlib Figure using a trained network, along with images
and labels from a batch, that shows the network's top prediction along
with its probability, alongside the actual label, coloring this
information based on whether the prediction was correct or not.
Uses the "images_to_probs" function.
'''
preds, probs = images_to_probs(net, images)
# plot the images in the batch, along with predicted and true labels
fig = plt.figure(figsize=(48, 48))
for idx in np.arange(32):
ax = fig.add_subplot(4, 8, idx+1, xticks=[], yticks=[])
matplotlib_imshow(images[idx], one_channel=False)
ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
classes[preds[idx]],
probs[idx] * 100.0,
classes[labels[idx]]),
color=(
"green" if preds[idx] == labels[idx].item(
) else "red"))
return fig
def add_pr_curve_tensorboard(class_index, test_probs,
test_label, writer, global_step=0):
'''
Takes in a "class_index" from 0 to 9 and plots the corresponding
precision-recall curve
'''
tensorboard_truth = test_label == class_index
if class_index == 0:
tensorboard_probs = 1 - test_probs
else:
tensorboard_probs = test_probs
writer.add_pr_curve(classes[class_index],
tensorboard_truth,
tensorboard_probs,
global_step=global_step)
writer.close()
def confussion_matrix(test, test_pred, test_accuracy, writer_path):
pred = np.round(test_pred)
cm = confusion_matrix(test, pred)
cm_df = pd.DataFrame(cm,
index=['Benign', 'Malignant'],
columns=['Benign', 'Malignant'])
plt.figure(figsize=(5.5, 4))
sb.heatmap(cm_df, annot=True)
plt.title('Confusion Matrix \nAccuracy:{0:.3f}'.format(test_accuracy))
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
now = datetime.datetime.now()
plt.savefig(os.path.join(
writer_path,
f'conf_matrix_{test_accuracy:.4f}_{now.strftime("%d_%m_%H_%M")}.png'))
def ShowImage(im, title='', ax=None):
if ax is None:
P.figure()
P.axis('off')
P.imshow(im)
P.title(title)
def ShowGrayscaleImage(im, title='', ax=None):
if ax is None:
P.figure()
P.axis('off')
P.imshow(im, cmap=P.cm.gray, vmin=0, vmax=1)
P.title(title)
def ShowHeatMap(im, title, ax=None):
if ax is None:
P.figure()
P.axis('off')
P.imshow(im, cmap='inferno')
P.title(title)
def LoadImage(file_path):
im = Image.open(file_path)
im = np.asarray(im)
return im
def PreprocessImages(images):
# assumes input is 4-D, with range [0,255]
#
# torchvision have color channel as first dimension
# with normalization relative to mean/std of ImageNet:
# https://pytorch.org/vision/stable/models.html
images = np.array(images)
images = images/255
images = np.transpose(images, (0, 3, 1, 2))
images = torch.tensor(images, dtype=torch.float32)
images = transformer.forward(images).to('cuda')
return images.requires_grad_(True)
def load_isic_data(path):
# ISIC dataset
df = pd.read_csv(os.path.join(path, 'train_concat.csv'))
train_img_dir = os.path.join(path, 'train/train/')
df['image_name'] = [
os.path.join(
train_img_dir, df.iloc[index]['image_name'] + '.jpg'
) for index in range(len(df))]
train_split, valid_split = train_test_split(
df, stratify=df.target, test_size=0.20, random_state=42)
train_df = pd.DataFrame(train_split)
validation_df = pd.DataFrame(valid_split)
return train_df, validation_df
def load_synthetic_data(syn_data_path, synt_n_imgs, only_syn=False):
# Load all images and labels from path
input_images = [
str(f) for f in sorted(
Path(syn_data_path).rglob('*')) if os.path.isfile(f)]
y = [0 if f.split('.jpg')[0][-1] == '0' else 1 for f in input_images]
ind_0, ind_1 = [], []
for i, _ in enumerate(input_images):
if y[i] == 0:
ind_0.append(i)
else:
ind_1.append(i)
# Select number of melanomas and benign samples
n_b, n_m = [
float(i) for i in synt_n_imgs.split(',')
] if not only_syn else [1000, 1000]
ind_0 = np.random.permutation(ind_0)[:int(n_b * 1000)]
ind_1 = np.random.permutation(ind_1)[:int(n_m * 1000)]
id_list = np.append(ind_0, ind_1)
train_img = [input_images[int(i)] for i in id_list]
train_gt = [y[int(i)] for i in id_list]
train_df = pd.DataFrame({'image_name': train_img, 'target': train_gt})
return train_df
def create_split(source_dir):
# Split synthetic dataset
input_images = [
str(f) for f in sorted(
Path(source_dir).rglob('*')) if os.path.isfile(f)]
ind_0, ind_1 = [], []
for i, f in enumerate(input_images):
if f.split('.')[0][-1] == '0':
ind_0.append(i)
else:
ind_1.append(i)
train_id_list = ind_0[round(len(ind_0)*0.8):]
val_id_list = ind_0[round(len(ind_0)*0.8):]
train_id_1 = ind_1[:round(len(ind_1)*0.8)]
val_id_1 = ind_1[round(len(ind_1)*0.8):]
train_id_list = np.append(train_id_list, train_id_1)
val_id_list = np.append(val_id_list, val_id_1)
return train_id_list, val_id_list
class CustomDataset(Dataset):
def __init__(self, df: pd.DataFrame,
train: bool = True, transforms=None):
self.df = df
self.transforms = transforms
self.train = train
def __len__(self):
return len(self.df)
def __getitem__(self, index):
img_path = self.df.iloc[index]['image_name']
rgb_img = cv2.imread(img_path, 1)[:, :, ::-1]
rgb_img = np.float32(rgb_img) / 255
images = Image.open(img_path)
if self.transforms:
images = self.transforms(images)
labels = self.df.iloc[index]['target']
if self.train:
# return images, labels
return torch.tensor(
images, dtype=torch.float32), torch.tensor(
labels, dtype=torch.float32)
else:
# return (images)
return img_path, torch.tensor(
images, dtype=torch.float32), torch.tensor(
labels, dtype=torch.float32)
class Synth_Dataset(Dataset):
def __init__(self, source_dir, transform, id_list=None,
input_img=None, test=False, unbalanced=False):
self.transform = transform
self.source_dir = source_dir
if input_img is None:
self.input_images = [str(f) for f in sorted(
Path(source_dir).rglob('*')) if os.path.isfile(f)]
else:
self.input_images = input_img
if unbalanced:
ind_0, ind_1 = create_split(source_dir)
ind = np.append(ind_0, ind_1)
self.input_images = [self.input_images[i] for i in ind]
self.id_list = id_list if id_list is not None else range(
len(self.input_images))
if test:
if unbalanced:
self.input_images = self.input_images[:5954]
def __len__(self):
return len(self.id_list)
def __getitem__(self, idx):
idx = self.id_list[idx]
image_fn = self.input_images[idx]
img = np.array(Image.open(image_fn))
target = int(image_fn.split('_')[-1].replace('.jpg', ''))
if self.transform is not None:
img = self.transform(img)
return torch.tensor(
img, dtype=torch.float32), torch.tensor(
target, dtype=torch.float32)
def load_model(model='efficientnet-b2'):
if "efficientnet" in model:
arch = EfficientNet.from_pretrained(model)
elif model == "googlenet":
arch = torchvision.models.googlenet(pretrained=True)
else:
arch = torchvision.models.resnet50(pretrained=True)
model = Net(arch=arch).to(device)
return model
class Net(nn.Module):
def __init__(self, arch, return_feats=False):
super(Net, self).__init__()
self.arch = arch
self.return_feats = return_feats
if 'fgdf' in str(arch.__class__):
self.arch.fc = nn.Linear(
in_features=1280,
out_features=500, bias=True)
if 'EfficientNet' in str(arch.__class__):
self.arch._fc = nn.Linear(
in_features=self.arch._fc.in_features,
out_features=500, bias=True)
else:
self.arch.fc = nn.Linear(
in_features=arch.fc.in_features,
out_features=500, bias=True)
self.ouput = nn.Linear(500, 1)
def forward(self, images):
"""
No sigmoid in forward because we are going to
use BCEWithLogitsLoss
Which applies sigmoid for us when calculating
a loss
"""
x = images
features = self.arch(x)
output = self.ouput(features)
if self.return_feats:
return features
return output