-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpatch_linear_layer.py
156 lines (132 loc) · 5.48 KB
/
patch_linear_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
from src.linear_layer_triton import LinearLayerTriton
from torch.fx import GraphModule
import src.utils as utils
from typing import Callable
from transformers.activations import NewGELUActivation
def linear_layer_triton_wrapper(inp: torch.Tensor, ll_layer: nn.Linear, activation=""):
weight = ll_layer.weight
bias = ll_layer.bias
if weight.dtype == torch.float32:
weight.data = weight.data.half()
if bias is not None and bias.dtype == torch.float32:
bias.data = bias.data.half()
# print(inp.shape, weight.shape)
llt = LinearLayerTriton(weight, bias, activation)
return llt(inp)
torch.fx.wrap("linear_layer_triton_wrapper")
def replace_linear_layer1(gm: GraphModule, debug: bool=False):
if debug:
print(gm.code)
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, v):
return self.linear(v)
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, v):
return linear_layer_triton_wrapper(v, self.linear)
utils.replace_pattern(gm, Pattern(), Replacement())
if debug:
print(gm.code)
def replace_linear_layer2(gm: GraphModule, activation_module: Callable, activation: str, debug: bool=False):
if debug:
print(gm.code)
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1, 1)
self.activation = activation_module
def forward(self, v):
return self.activation(self.linear(v))
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1, 1)
self.activation = activation_module
def forward(self, v):
return linear_layer_triton_wrapper(v, self.linear, activation=activation)
utils.replace_pattern(gm, Pattern(), Replacement())
if debug:
print(gm.code)
# T5DenseActDense pattern
def replace_linear_layer3(gm: GraphModule, activation_module: Callable, activation: str, debug: bool=False):
if debug:
print(gm.code)
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(1, 1)
self.linear2 = torch.nn.Linear(1, 1)
self.dropout = torch.nn.Dropout()
self.activation = activation_module
def forward(self, v):
v = self.linear1(v)
v = self.activation(v)
v = self.dropout(v)
return self.linear2(v)
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(1, 1)
self.linear2 = torch.nn.Linear(1, 1)
self.dropout = torch.nn.Dropout()
self.activation = activation_module
def forward(self, v):
v = linear_layer_triton_wrapper(v, self.linear1, activation=activation)
v = self.dropout(v)
return self.linear2(v)
utils.replace_pattern(gm, Pattern(), Replacement())
if debug:
print(gm.code)
# T5DenseGatedActDense pattern
def replace_linear_layer4(gm: GraphModule, activation_module: Callable, activation: str, debug: bool=False):
if debug:
print(gm.code)
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(1, 1)
self.linear2 = torch.nn.Linear(1, 1)
self.linear3 = torch.nn.Linear(1, 1)
self.dropout = torch.nn.Dropout()
self.activation = activation_module
def forward(self, v):
hidden_gelu = self.activation(self.linear1(v))
hidden_linear = self.linear2(v)
v = hidden_gelu * hidden_linear
v = self.dropout(v)
return self.linear3(v)
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(1, 1)
self.linear2 = torch.nn.Linear(1, 1)
self.linear3 = torch.nn.Linear(1, 1)
self.dropout = torch.nn.Dropout()
self.activation = activation_module
def forward(self, v):
hidden_gelu = linear_layer_triton_wrapper(v, self.linear1, activation=activation)
hidden_linear = self.linear2(v)
v = hidden_gelu * hidden_linear
v = self.dropout(v)
return self.linear3(v)
utils.replace_pattern(gm, Pattern(), Replacement())
if debug:
print(gm.code)
def patch_linear_layer(gm: GraphModule, debug: bool=False):
replace_linear_layer4(gm, NewGELUActivation(), "fast_gelu", debug=debug)
replace_linear_layer4(gm, torch.nn.GELU(), "fast_gelu", debug=debug)
replace_linear_layer4(gm, torch.nn.ReLU(), "relu", debug=debug)
replace_linear_layer3(gm, NewGELUActivation(), "fast_gelu", debug=debug)
replace_linear_layer3(gm, torch.nn.GELU(), "fast_gelu", debug=debug)
replace_linear_layer3(gm, torch.nn.ReLU(), "relu", debug=debug)
replace_linear_layer2(gm, NewGELUActivation(), "fast_gelu", debug=debug)
replace_linear_layer2(gm, torch.nn.GELU(), "fast_gelu", debug=debug)
replace_linear_layer2(gm, torch.nn.ReLU(), "relu", debug=debug)
replace_linear_layer1(gm, debug=debug)