-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetaNN.py
129 lines (110 loc) · 4.81 KB
/
MetaNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import argparse
# from subprocess import Popen
from multiprocessing import Pool
import itertools
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--super-suffix', type=str,
default='last_exp')
# super_suffix = 'attention_multiplier_2_0' # 'march_6'
# time_step_list = [5, 10, 20, 30] # [5, 10, 20, 30, 40]
# window_size_list = [60, 120, 180, 300] # [60, 120, 180, 300]
# time_step_list = [5, 10, 20, 30] # [5, 10, 20, 30, 40]
time_step_list = [20] # [5, 10, 20, 30, 40]
window_size_list = [180] # [60, 120, 180, 300]
batch_size_list = [1024] # 32
hidden_size_list = [8]
attention_list = [1] # [4, 0, 2, 1] [0, 1, 2, 3, 4, 5, 6, 7, 8]
n_attention_layers_list = [1] # Looks like 2 is better than 1
# n_dense_layers_list = [1, 2, 3, 4] # 3 # Looks like 2 is a bit better than 1
n_dense_layers_list = [2] # 3 # Looks like 2 is a bit better than 1
# n_attention_layers_with_hidden_state_list = [0, 1]
n_attention_layers_with_hidden_state_list = [1]
# cell_type_list = ['gru'] # 'no_cell', 'rnn',
cell_type_list = ['gru'] # 'no_cell', 'rnn',
# cell_type_list = ['no_cell'] # 'no_cell', 'rnn',
opt_list = ['adam']
normalization_list = [0]
n_repeat = 40
n_inits = 40
plot_attention = 5
n_processes = 8
scorer = 'auc' # 'auc'
target_types_list = ['more_than_avg_fair']
# target_types_list = ['more_than_avg']
# target_types_list = ['more_than_avg']
every_step_training_list = [1]
# target_types_list = ['more_than_median', 'more_than_avg', 'more_than_before']
# attention_multiplier = 3
warmup = 10 # 30
n_epoches = 500
# batches4epoch = 20 # 20
max_patience = 3 # 30
hidden_state_warmup = 0
plot_cell = False
plot_predict = False
plot_target = False
modify_attention_array = False
recreate_dataset = 0
target_prefix = 'kills_proportion'
player_ids = ['9', '0', '11', '7', '6', '1', '10', '19', '8', '21', '4', '3', '12', '2', '5', '14', '22'] + ['13', '15', '16', '17']
def list2cmd_format(x):
if type(x) == list: # As expected
x = [str(y) for y in x]
return ' '.join(x)
else:
return x # Probably there is only one value
args = parser.parse_args()
print(f'super_suffix is {args.super_suffix}')
def run_command(time_step, window_size, batch_size, hidden_size, attention, normalization, n_attention_layers,
n_dense_layers, n_attention_layers_with_hidden_state, cell_type, opt_list, target_types, every_step_training):
# super_suffix = args.super_suffix + f'_{process_id}'
super_suffix = args.super_suffix
command = f'python NN.py '\
f'--super_suffix {super_suffix} '\
f'--loss bce --scorer {scorer} '\
f'--max_patience {max_patience} '\
f'--plot_attention {plot_attention} '\
f'--recreate_dataset {recreate_dataset} '\
f'--n_repeat {n_repeat} '\
f'--player_ids {list2cmd_format(player_ids )} '\
f'--time_step_list {list2cmd_format(time_step)} '\
f'--window_size_list {list2cmd_format(window_size)} '\
f'--batch_size_list {list2cmd_format(batch_size)} '\
f'--hidden_size_list {list2cmd_format(hidden_size)} '\
f'--attention_list {list2cmd_format(attention)} '\
f'--normalization_list {list2cmd_format(normalization)} '\
f'--n_attention_layers_list {list2cmd_format(n_attention_layers)} '\
f'--n_dense_layers_list {list2cmd_format(n_dense_layers)} '\
f'--n_attention_layers_with_hidden_state_list {list2cmd_format(n_attention_layers_with_hidden_state)} '\
f'--cell_type_list {list2cmd_format(cell_type)} '\
f'--opt_list {list2cmd_format(opt_list)} '\
f'--target_types {list2cmd_format(target_types)} '\
f'--arch=splitted_nn '\
f'--every_step_training={every_step_training} '\
f'--n_inits={n_inits} '\
f'--warmup {warmup} '# \
# f'--append_dumb_predict'
# f'--target_verbose '
os.system(command)
if __name__ == '__main__':
pool_args = itertools.product(time_step_list, window_size_list, batch_size_list, hidden_size_list, attention_list, normalization_list,
n_attention_layers_list, n_dense_layers_list, n_attention_layers_with_hidden_state_list, cell_type_list, opt_list, target_types_list, every_step_training_list)
pool_args = list(pool_args)
pool_args = np.random.permutation(pool_args) # I'm increasing the probability having the error soon after start
# rather than in the end
print(f'Conducting {len(pool_args)} experiments, each with {n_repeat} repetitions')
print(pool_args)
pool = Pool(n_processes)
pool.starmap(run_command, pool_args)
#
# p = Popen(os.path.join(os.getcwd(), 'NN.py'), shell=True)
# p.wait()
#
#
# print(command)
#
# # os.system(command)
#
#