-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathExtractMonomialBasis.txt
284 lines (238 loc) · 14.8 KB
/
ExtractMonomialBasis.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
extract_mon_basis:= proc(eqs, vars, sizeofcombs, polycomb, heurisiticbasislength)
local tempT, zcols, Cr, Ctemp, rows2rem, rows2kp, rowindices, colindices, cstried, c, Btemp, Ttemp, B1, T1, T2, B2, temp, bbs, gbs, cols2kp, cols2rem, simplex, selectedB, selectedT, counter, newpredeigsz, oldpredeigsz, modifiedCred, found, ti, crowstobedelet, rowColCnts, tempCred, Cred, tn, C, solverrank, testcoeffmat, Tn, ii, baks, k, T, Bset, minmonnorm, isbnpresent, Bn, B, interiorintpoints, hp1s, hlfsps, translatedconvhull, delta, deltatoskip, deltasiterator, combind, i, allBs, minkowskis, ind, PForMink, comb, vci, variouscombinations, A, v, P, EE, ll, indicestotest, indicestoskip:
EE := eval(expand(eqs)):
for i to ArrayTools[Size](EE)[2] do
P[i] := newtonpolytope(EE[i], vars):
v[i] := vertices(P[i]):
A[i] := lattpts(EE[i], vars):
end do:
simplex := map(proc (j) options operator, arrow; map(proc (i) options operator, arrow; `if`(i = j, rand(1..4)(), 0) end proc, [seq(1 .. numelems(vars))]) end proc, [seq(1 .. numelems(vars)+1)]):
P[i] := convhull(op(simplex)):
v[i] := vertices(P[i]):
A[i] := vertices(P[i]):
v := convert(v, list):
if numelems(polycomb) = 0 then
variouscombinations := (map(proc (l) options operator, arrow; seq(combinat[choose]([seq(1 .. numelems(P))], l)) end proc, sizeofcombs)):
else
variouscombinations:= [polycomb]:
end if:
unassign('minkowskis');
for vci to numelems(variouscombinations) do
comb := variouscombinations[vci]:
PForMink := [];
for ind in comb do
PForMink := [op(PForMink), P[ind]]:
end do:
minkowskis[vci] := minkowskisum(op(PForMink)):
end do:
selectedB := -1:
selectedT := -1:
allBs := []:
oldpredeigsz := infinity:
for combind in combinat[randperm]([seq(1..numelems(variouscombinations))]) do
randomize():
printf("Considering the polytopes : %s \n", convert(variouscombinations[combind],string));
deltasiterator := combinat[cartprod](map(proc (i1) options operator, arrow; map(proc (j) options operator, arrow; j end proc, [ -0.01, 0.01, 0]) end proc, [seq(1 .. numelems(vars))])):
while not deltasiterator[finished] do
delta := deltasiterator[nextvalue]():
translatedconvhull := minkowskisum(minkowskis[combind], convhull(convert(delta, rational))):
if dim(translatedconvhull) < numelems(vars) then
next:
end if:
hp1s := map(rel -> convert(`~`[`*`](lhs(rel), ` $`, vars), `+`) <= rhs(rel), convert(hspaces(translatedconvhull), list)):
try
B := convert(IntegerPoints1(hp1s, vars), list);
catch:
printf("Failed for delta %s \n", convert(delta,string));
next:
end try:
Bn := numelems(B):
if Bn = 0 then next: end if:
minmonnorm := norm(convert(ListTools[FindMinimalElement](B, proc (b1, b2) options operator, arrow; norm(convert(b1-b2,Vector)) = 0 end proc),Vector)):
# if minmonnorm <> 0 then next: end if:
Bset := convert(B, set);
for k to numelems(EE) do
T[k] := []:
baks := map(proc (belement) options operator, arrow; op(select(proc (diffba) options operator, arrow; foldl(`and`, true, op(`~`[`>=`](diffba, ` $`, map(proc (ii) options operator, arrow; 0 end proc, [seq(1 .. numelems(vars))])))) end proc, map(proc (aelement) options operator, arrow; `~`[`-`](belement, aelement) end proc, A[k]))) end proc, B):
for ii to numelems(A[k])-1 do
baks := ListTools[FindRepetitions](baks):
end do:
T[k] := convert(convert(convert(baks, set), list), Matrix):
end do:
T := convert(T,list):
Tn := convert(map(t->ArrayTools[Size](t,1), T), `+`):
if Tn >= Bn and min(map(t->ArrayTools[Size](t,1), T)) > 0 then
temp := convert(T[-1], list, nested = true):
bbs := map(proc (i1) options operator, arrow; select(proc (j1) options operator, arrow; B[j1] = [temp[i1][1], op(temp[i1][2..])] end proc, [seq(1 .. Bn)])[1] end proc, [seq(1 .. numelems(temp))]):
gbs := convert(convert([seq(1 .. numelems(B))], set) minus convert(bbs, set), list):
testcoeffmat := polytomat(T, B, EE, vars, Bn, Tn):
testcoeffmat := LinearAlgebra[Modular][Mod](ithprime(1000), testcoeffmat, integer[8]):
solverrank := LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat):
if Bn = solverrank then
newpredeigsz := Bn - LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat[1..(Tn - numelems(temp)), ..]):
if newpredeigsz <= oldpredeigsz and convert(map(b->numelems(b)>Bn, allBs), `and`) then
oldpredeigsz := newpredeigsz:
if LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat[1..Tn - numelems(temp), gbs]) = numelems(gbs) then
selectedB := B:
selectedT := T:
allBs := [op(allBs), B]:
printf(" .................... \n"):
printf("Coefficient matrix: %d X %d \n", Tn, Bn);
printf("Predicted eigenvalue problem: %d \n", newpredeigsz):
printf("delta = %{t}2f \n", LinearAlgebra[Transpose](convert(delta,Matrix))):
printf(" .................... \n"):
end if:
end if:
end if:
end if:
end do:
end do:
if selectedT = -1 then
printf("NO SOLVER FOUND .... \n"):
return convert([],list), convert([],list), [[]]:
end if:
T := selectedT:
Tn := convert(map(proc (t) options operator, arrow; ArrayTools[Size](t,1) end proc, T), `+`):
B := selectedB:
Bn := numelems(B):
C := polytomat(convert(T, list), B, eval(eqs), vars, Bn, Tn);
testcoeffmat := LinearAlgebra[Modular][Mod](ithprime(1000), C, integer[8]):
solverrank := LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat):
printf("Monomial basis extracted. \n"):
temp := convert(T[-1], list, nested = true):
oldpredeigsz := Bn - LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat[1..(Tn - numelems(temp)), ..]):
# Removal of rows and columns =================================================================================================================
B1 := B: T1 := convert(T,list):
T2 := T1: B2 := B1:
found := numelems(B):
while numelems(B2) > heurisiticbasislength do
B1 := B: T1 := convert(T,list):
Tn := convert(map(proc (t) options operator, arrow; ArrayTools[Size](t,1) end proc, T1), `+`):
cstried :=[]:
printf("Attempting row-column removal... \n"):
ind := 1;
while numelems(B1) > heurisiticbasislength do
randomize():
Tn := convert(map(proc (t) options operator, arrow; ArrayTools[Size](t,1) end proc, T1), `+`):
Ctemp := polytomat(T1, B1, eval(eqs), vars, numelems(B1), convert(map(proc (t) options operator, arrow; ArrayTools[Size](t,1) end proc, T1), `+`)):
Ctemp := LinearAlgebra[Modular][Mod](ithprime(1000), Ctemp, integer[8]):
Btemp := B1:
Ttemp := T1:
temp := convert(Ttemp[-1], list, nested = true):
bbs := map(i1 -> select(k -> Btemp[k] = [temp[i1][1], op(temp[i1][2..])], [seq(1 .. numelems(Btemp))])[1], [seq(1 .. numelems(temp))]):
gbs := convert(convert([seq(1 .. numelems(Btemp))], set) minus convert(bbs, set), list):
if numelems(cstried) = numelems(B) then break: end if:
rowindices := [seq(1..Tn)]:
colindices := [seq(1..numelems(Btemp))]:
c := [op(combinat[randperm]([op(gbs), op(bbs)])[1..1])]:
cstried := [op(cstried), op(c)]:
# Cols to remove
rows2rem := convert(convert(map(j -> op(select(i -> Ctemp[i,j] <> 0, [seq(1..ArrayTools[Size](Ctemp)[1])])), c),set),list):
rows2kp := select(proc (j) options operator, arrow; not(j in rows2rem) end proc, [seq(1 .. ArrayTools[Size](Ctemp,1))]):
# Modified C
Ctemp := Ctemp[rows2kp, () .. ()]:
if ArrayTools[Size](Ctemp,1) < ArrayTools[Size](Ctemp,2) or ArrayTools[Size](Ctemp,1) = 0 then next: end if:
zcols := convert(ArrayTools[AddAlongDimension](map(i -> `if`(i = 0, 0, 1), Ctemp), 1), list):
cols2kp := select(j -> zcols[j] <> 0, [seq(1 .. numelems(zcols))]):
cols2rem := select(j -> zcols[j] = 0, [seq(1 .. numelems(zcols))]):
Ctemp := Ctemp[() .. (), cols2kp]:
Btemp := Btemp[cols2kp]:
if numelems(cols2rem) = 0 then next: end if:
rowindices := rowindices[rows2kp]:
Ttemp:=map(k -> Ttemp[k][select(j -> j+convert(map(t->ArrayTools[Size](Ttemp[t],1), [seq(1 .. numelems(Ttemp[..k-1]))]), `+`) in rowindices, [seq(1..ArrayTools[Size](Ttemp[k],1))]),..], [seq(1..numelems(Ttemp))]):
if convert(map(t->ArrayTools[Size](t,1), Ttemp), `*`) = 0 then next: end if:
temp := convert(Ttemp[-1], list, nested = true):
bbs := map(i1 -> select(k -> Btemp[k] = [temp[i1][1], op(temp[i1][2..])], [seq(1 .. numelems(Btemp))])[1], [seq(1 .. numelems(temp))]):
gbs := convert(convert([seq(1 .. numelems(Btemp))], set) minus convert(bbs, set), list):
if (numelems(gbs)-LinearAlgebra[Modular][Rank](ithprime(1000), Ctemp[[seq(1..convert(map(t -> ArrayTools[Size](t,1), Ttemp[..-2]), `+`))], gbs]) <> 0) then next: end if:
newpredeigsz := numelems(Btemp) - LinearAlgebra[Modular][Rank](ithprime(1000), Ctemp[1..convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, Ttemp[..-2]), `+`), ..]):
if newpredeigsz > oldpredeigsz then next: end if:
B1 := Btemp:
T1 := Ttemp:
cstried := []:
end do:
if found > numelems(B1) then
T2 := T1:
B2 := B1:
found := numelems(B1):
end if:
end do:
T:=T2: B:=B2:
Tn := convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, T), `+`):
C := polytomat(convert(T, list), B, eval(eqs), vars, numelems(B), Tn):
printf("Reduced coefficient matrix: %d X %d \n", Tn, numelems(B)):
# =============================================================================================================
# =============================================================================================================
# For tracking an indice, we add '1' to the end of each element in the list of monomial multiples
tn := 0:
for k to ArrayTools[Size](T)[2] do
T[k] := convert((map(proc (t) options operator, arrow; [op(convert(T[k][t], list)), t+tn] end proc, [seq(1 .. ArrayTools[Size](T[k])[1])])), Matrix):
tn := tn + ArrayTools[Size](T[k])[1]:
end do:
# =============================================================================================================
printf("Removing the excess rows to get a reduced matrix with smaller basis.\n"):
# =============================================================================================================
# =============================================================================================================
for counter from 1 to 500 do
randomize():
Cred := LinearAlgebra[Copy](LinearAlgebra[Modular][Mod](ithprime(1000), C, integer[8])):
T1 := T:
tempCred := Cred:
rowColCnts := ArrayTools[Size](Cred):
crowstobedelet := []:
ll := max(map(proc (ti) options operator, arrow; ArrayTools[Size](ti)[1] end proc, T1)):
indicestotest := [seq(1..Tn)]:
temp := ListTools[Reverse](ListTools[Reverse]([seq(1..convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, T1), `+`))])[1..ArrayTools[Size](T1[-1],1)]):
indicestoskip := []:
#indicestoskip := [op(indicestoskip),op(select(i -> convert(convert(T1[-1][i - (tn-ArrayTools[Size](T1[-1],1)) ,..-2], list), `+`) <= 1, temp))]:
temp := convert(convert(temp, set) minus convert(indicestoskip,set), list):
indicestotest := convert(convert(indicestotest,set) minus convert(temp,set), list):
indicestotest := [op(ListTools[Reverse](temp)), op(indicestotest[1..0]), op(combinat[randperm](indicestotest[1..]))]:
for i in indicestotest do
for ti to ArrayTools[Size](T1)[2] do
temp := T1[ti];
found := select(proc (ti1) options operator, arrow; T1[ti][ti1][-1] = i end proc, [seq(1 .. ArrayTools[Size](T1[ti])[1])]);
if numelems(found) > 0 then
temp := LinearAlgebra[DeleteRow](T1[ti], found);
break:
end if:
end do;
modifiedCred := LinearAlgebra[DeleteRow](tempCred, [op(crowstobedelet), i]):
testcoeffmat := LinearAlgebra[Modular][Mod](ithprime(1000), modifiedCred, integer[8]):
solverrank := LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat):
if ArrayTools[Size](temp)[1] > 0 then
if solverrank = rowColCnts[2] then
tempT := T1:
tempT[ti] := LinearAlgebra[DeleteRow](tempT[ti], found):
temp := convert(tempT[-1], list, nested = true):
bbs := map(proc (i1) options operator, arrow; select(proc (j1) options operator, arrow; B[j1] = [temp[i1][1], op(temp[i1][2..-2])] end proc, [seq(1 .. numelems(B))])[1] end proc, [seq(1 .. numelems(temp))]):
gbs := convert(convert([seq(1 .. numelems(B))], set) minus convert(bbs, set), list):
if numelems(gbs) = LinearAlgebra[Modular][Rank](ithprime(1000), testcoeffmat[1 .. convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, tempT[() .. -2]), `+`), gbs]) then
Cred := modifiedCred:
T1[ti] := LinearAlgebra[DeleteRow](T1[ti], found):
crowstobedelet := [op(crowstobedelet), i]:
rowColCnts := ArrayTools[Size](Cred):
end if:
end if:
end if:
end do:
for k to ArrayTools[Size](T)[2] do
T1[k] := convert((map(proc (t) options operator, arrow; [op(convert(T1[k][t][..-2], list))] end proc, [seq(1 .. ArrayTools[Size](T1[k])[1])])), Matrix):
end do:
temp := convert(T1[-1], list, nested = true):
bbs := map(i1 -> select(j1 -> B[j1] = [temp[i1][1], op(temp[i1][2..])], [seq(1 .. numelems(B))])[1], [seq(1 .. numelems(temp))]):
gbs := convert(convert([seq(1 .. numelems(B))], set) minus convert(bbs, set), list):
Cr := polytomat(convert(T1, list), B, eval(eqs), vars, numelems(B), convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, T1), `+`)):
temp := Cr[1 .. convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, T1[() .. -2]), `+`), gbs]:
T2 := T1:
if ArrayTools[Size](Cred,1) = ArrayTools[Size](Cred,2) then
break:
end if:
end do:
T := T2:
#print(T, numelems(B), "........................................");
Tn := convert(map(proc (t) options operator, arrow; ArrayTools[Size](t,1) end proc, T), `+`):
# =============================================================================================================
Cr := polytomat(convert(T, list), B, eval(eqs), vars, numelems(B), convert(map(proc (t) options operator, arrow; ArrayTools[Size](t)[1] end proc, T), `+`)):
return selectedT, B, T:
end proc: