This repository was archived by the owner on Jun 21, 2023. It is now read-only.
forked from statsd/statsd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_metrics.js
115 lines (95 loc) · 3.77 KB
/
process_metrics.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
var process_metrics = function (metrics, flushInterval, ts, flushCallback) {
var starttime = Date.now();
var key;
var counter_rates = {};
var timer_data = {};
var statsd_metrics = {};
var counters = metrics.counters;
var timers = metrics.timers;
var timer_counters = metrics.timer_counters;
var pctThreshold = metrics.pctThreshold;
var histogram = metrics.histogram;
for (key in counters) {
var value = counters[key];
// calculate "per second" rate
counter_rates[key] = value / (flushInterval / 1000);
}
for (key in timers) {
if (timers[key].length > 0) {
timer_data[key] = {};
var current_timer_data = {};
var values = timers[key].sort(function (a,b) { return a-b; });
var count = values.length;
var min = values[0];
var max = values[count - 1];
var cumulativeValues = [min];
for (var i = 1; i < count; i++) {
cumulativeValues.push(values[i] + cumulativeValues[i-1]);
}
var sum = min;
var mean = min;
var maxAtThreshold = max;
var key2;
for (key2 in pctThreshold) {
var pct = pctThreshold[key2];
if (count > 1) {
var numInThreshold = Math.round(pct / 100 * count);
maxAtThreshold = values[numInThreshold - 1];
sum = cumulativeValues[numInThreshold - 1];
mean = sum / numInThreshold;
}
var clean_pct = '' + pct;
clean_pct = clean_pct.replace('.', '_');
current_timer_data["mean_" + clean_pct] = mean;
current_timer_data["upper_" + clean_pct] = maxAtThreshold;
current_timer_data["sum_" + clean_pct] = sum;
}
sum = cumulativeValues[count-1];
mean = sum / count;
var sumOfDiffs = 0;
for (var i = 0; i < count; i++) {
sumOfDiffs += (values[i] - mean) * (values[i] - mean);
}
var stddev = Math.sqrt(sumOfDiffs / count);
current_timer_data["std"] = stddev;
current_timer_data["upper"] = max;
current_timer_data["lower"] = min;
current_timer_data["count"] = timer_counters[key];
current_timer_data["count_ps"] = timer_counters[key] / (flushInterval / 1000);
current_timer_data["sum"] = sum;
current_timer_data["mean"] = mean;
// note: values bigger than the upper limit of the last bin are ignored, by design
conf = histogram || [];
bins = [];
for (var i = 0; i < conf.length; i++) {
if (key.indexOf(conf[i].metric) > -1) {
bins = conf[i].bins;
break;
}
}
if(bins.length) {
current_timer_data['histogram'] = {};
}
// the outer loop iterates bins, the inner loop iterates timer values;
// within each run of the inner loop we should only consider the timer value range that's within the scope of the current bin
// so we leverage the fact that the values are already sorted to end up with only full 1 iteration of the entire values range
var i = 0;
for (var bin_i = 0; bin_i < bins.length; bin_i++) {
var freq = 0;
for (; i < count && (bins[bin_i] == 'inf' || values[i] < bins[bin_i]); i++) {
freq += 1;
}
bin_name = 'bin_' + bins[bin_i];
current_timer_data['histogram'][bin_name] = freq;
}
timer_data[key] = current_timer_data;
}
}
statsd_metrics["processing_time"] = (Date.now() - starttime);
//add processed metrics to the metrics_hash
metrics.counter_rates = counter_rates;
metrics.timer_data = timer_data;
metrics.statsd_metrics = statsd_metrics;
flushCallback(metrics);
}
exports.process_metrics = process_metrics