-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDesign Circular Queue.py
113 lines (90 loc) · 3.6 KB
/
Design Circular Queue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
'''
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MycircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note:
All values will be in the range of [0, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in Queue library.
'''
class MyCircularQueue(object):
def __init__(self, k):
"""
Initialize your data structure here. Set the size of the queue to be k.
:type k: int
"""
self.queue = []
self.capacity = k
def enQueue(self, value):
"""
Insert an element into the circular queue. Return true if the operation is successful.
:type value: int
:rtype: bool
"""
if len(self.queue) >= self.capacity:
return False
self.queue.append(value)
return True
def deQueue(self):
"""
Delete an element from the circular queue. Return true if the operation is successful.
:rtype: bool
"""
if len(self.queue) == 0:
return False
self.queue.pop(0)
return True
def Front(self):
"""
Get the front item from the queue.
:rtype: int
"""
if len(self.queue) == 0:
return -1
return self.queue[0]
def Rear(self):
"""
Get the last item from the queue.
:rtype: int
"""
if len(self.queue) == 0:
return -1
return self.queue[-1]
def isEmpty(self):
"""
Checks whether the circular queue is empty or not.
:rtype: bool
"""
return len(self.queue) == 0
def isFull(self):
"""
Checks whether the circular queue is full or not.
:rtype: bool
"""
return len(self.queue) == self.capacity
# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()