-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKth Smallest Element in a BST.py
54 lines (44 loc) · 1.3 KB
/
Kth Smallest Element in a BST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
'''
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
'''
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
import heapq
class Solution(object):
def kthSmallest(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: int
"""
if not root:
return -1
heap = []
vec = [root]
while len(vec) > 0:
next_vec = []
for node in vec:
heapq.heappush(heap, node.val)
if node.left:
next_vec.append(node.left)
if node.right:
next_vec.append(node.right)
vec = next_vec
res = -1
for i in xrange(k):
res = heapq.heappop(heap)
return res