-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSplit Array Largest Sum.py
57 lines (46 loc) · 1.3 KB
/
Split Array Largest Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
'''
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
Examples:
Input:
nums = [7,2,5,10,8]
m = 2
Output:
18
Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.
'''
class Solution(object):
def splitArray(self, nums, m):
"""
:type nums: List[int]
:type m: int
:rtype: int
"""
left = 0
right = sum(nums)
while left < right:
mid = (left + right) // 2
if self.yes(mid, nums, m):
right = mid
else:
left = mid + 1
return left
def yes(self, top, nums, m):
tot = 1
tmp = 0
for x in nums:
if x > top:
return False
tmp += x
if tmp > top:
tot += 1
tmp = x
if tot > m:
return False
return True