-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetfit_text_classification_multilabel_zh.py
157 lines (125 loc) · 3.87 KB
/
setfit_text_classification_multilabel_zh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
####
'''
pip install setfit==0.3.0
pip install easynmt
'''
####
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
from easynmt import EasyNMT
import pandas as pd
import seaborn as sns
import numpy as np
import json
from datasets import load_dataset
import jieba
def repeat_to_one_f(x):
req = None
for token in jieba.lcut(x):
#print("req :", req)
if len(set(token)) == 1:
token = token[0]
if req is None:
req = token
else:
if token in req:
continue
else:
while req.endswith(token[0]):
token = token[1:]
req = req + token
return req.strip()
def repeat_to_one_fb(x):
return sorted(map(repeat_to_one_f, [x, "".join(jieba.lcut(x)[::-1])]),
key = len
)[0]
repeat_to_one = repeat_to_one_fb
dataset = load_dataset("ethos", "multilabel")
ds_df = pd.DataFrame(list(dataset["train"]))
all_eng_text_list = ds_df["text"].values.tolist() + ds_df.columns.tolist()
with open("ethos_eng.json", "w") as f:
json.dump(all_eng_text_list, f)
trans_model = EasyNMT('opus-mt')
trans_model.translate(
"Who are you ?", source_lang="en", target_lang = "zh"
)
'''
pool = trans_model.start_multi_process_pool(["cpu"] * 5)
print(len(all_eng_text_list))
req = all_eng_text_list
trans_list = trans_model.translate_multi_process(pool ,req,
source_lang="en", target_lang = "zh")
trans_model.stop_multi_process_pool(pool)
'''
req = all_eng_text_list
trans_list = trans_model.translate(req,
source_lang="en", target_lang = "zh")
ds_df = pd.DataFrame(list(zip(*[req, trans_list])))
ds_df.columns = ["en", "zh"]
ds_df["zh"] = ds_df["zh"].map(repeat_to_one)
ds_df.to_csv("ethos_en_zh.csv", index = False)
en_zh_dict = dict(ds_df.values.tolist())
#### add zh_text as field
dataset = dataset.map(
lambda x: {"zh_text": en_zh_dict[x["text"]]}
)
dataset = dataset.remove_columns("text")
dataset = dataset.rename_column(
"zh_text", "text"
)
features = dataset["train"].column_names
features.remove("text")
features
num_samples = 8
samples = np.concatenate(
[
np.random.choice(np.where(dataset["train"][f])[0], num_samples)
for f in features
]
)
def encode_labels(record):
return {"labels": [record[feature] for feature in features]}
dataset = dataset.map(encode_labels)
train_dataset = dataset["train"].select(samples)
eval_dataset = dataset["train"].select(
np.setdiff1d(np.arange(len(dataset["train"])), samples)
)
from setfit import SetFitModel
####model_id = "sentence-transformers/paraphrase-mpnet-base-v2"
#### "xlm-roberta-base" not cos
#### "sentence-transformer/paraphrase-multilingual-mpnet-base-v2" cos
model_id = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
model = SetFitModel.from_pretrained(model_id, multi_target_strategy="one-vs-rest")
from sentence_transformers.losses import CosineSimilarityLoss
from setfit import SetFitTrainer
trainer = SetFitTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss_class=CosineSimilarityLoss,
batch_size=16,
num_epochs=1,
num_iterations=20,
column_mapping={"text": "text", "labels": "label"},
)
#### model.from_pretrained
model.save_pretrained("ethos_zh_model")
for_pred = [
"Jewish people often don't eat pork.",
"Is this lipstick suitable for people with dark skin?"
]
zh_for_pred = trans_model.translate(for_pred, source_lang="en", target_lang = "zh")
zh_for_pred
'''
['犹太人经常不吃猪肉', '这口红适合皮肤黑的人吗?']
'''
preds = model(
zh_for_pred
)
preds
pd.DataFrame(preds, columns=list(map(lambda x: en_zh_dict[x], features)), index = zh_for_pred)
'''
暴力 定向 -通用 性别 种族 民族原籍 残疾 宗教、 性取向和
犹太人经常不吃猪肉 0 0 0 0 0 0 1 0
这口红适合皮肤黑的人吗? 0 1 0 1 0 0 0 0
'''