-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproxymoron.c
1391 lines (1101 loc) · 37.3 KB
/
proxymoron.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* MIT License
*
* Copyright 2019 Ted Percival
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define _GNU_SOURCE 1
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/sysinfo.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <time.h>
#include <unistd.h>
#define PORT_NUMBER 8081
// Define to a number of processes to run.
// If undefined, automatically uses all CPUs.
#define NCPUS 1
#define MAX_REQUEST_SIZE 65536
#define MAX_PIPELINED_REQUEST_DATA (MAX_REQUEST_SIZE * 4)
// Should be at least 2 to handle long-lived keep-alive connections dropped by
// middleboxes.
#define MAX_CONNECT_ATTEMPTS 2u
__attribute__((noreturn))
static void fatal_perror(const char *msg) {
perror(msg);
exit(EXIT_FAILURE);
}
static void cork(int sock, bool whether) {
const int value = whether ? 1 : 0;
if (setsockopt(sock, IPPROTO_TCP, TCP_CORK, &value, sizeof(value)) == -1)
perror("setsockopt(TCP_CORK)");
}
static void tcp_cork(int sock) {
cork(sock, true);
}
static void tcp_uncork(int sock) {
cork(sock, false);
}
struct streambuf {
char *data;
size_t len;
size_t cap;
};
struct endpoint {
int fd;
struct streambuf incoming, outgoing;
};
#if 0 // Don't need to parse out a request yet. Just pass the entire request buffer.
// Request;
// All fields are intended to point into a streambuf, the only special case
// is that the headers array itself needs to be dynamically allocated to allow
// it to hold any number of headers.
struct request {
char *method;
char *path; // path + query in RFC 3986 terms
char *headers[]; // NUL-terminated, dynamically allocated list.
};
void free_request_contents(struct request *req) {
// See description of `struct request` for why these pointers aren't freed.
req->method = NULL;
req->path = NULL;
free(req->headers);
req->headers = NULL;
}
#endif
enum state {
FRONTEND_READ_WAIT, // Wait for next request
BACKEND_WRITE_WAIT, // Wait to write to backend
BACKEND_READ_WAIT, // Wait for backend response
FRONTEND_WRITE_WAIT, // Wait to write to frontend
};
struct job {
struct endpoint client, backend;
// Backend request has to be kept in case we need to retry on a new
// connection. It should point into the client.incoming buffer and *not* be
// dynamically allocated.
struct {
const char *data;
size_t len;
size_t remaining_len; // how much remains to send on *this* connection attempt
// When using this field, start at data + (len - remaining_len) (sorry)
} backend_request;
unsigned connect_attempts;
};
// Advance the current data location / consume a block of data.
// Avoid doing small advances; repeated small advances are inefficient.
static void streambuf_advance(struct streambuf *streambuf, size_t amount) {
assert(amount <= streambuf->len);
streambuf->len -= amount;
if (streambuf->len == 0)
return; // nothing else to do :)
memmove(streambuf->data, streambuf->data + amount, streambuf->len);
}
static bool streambuf_init(struct streambuf *streambuf) {
streambuf->cap = 4096;
streambuf->data = malloc(streambuf->cap);
streambuf->len = 0;
return streambuf->data != NULL ? true : false;
}
static void streambuf_free_contents(struct streambuf *streambuf) {
free(streambuf->data);
streambuf->data = NULL;
streambuf->len = 0;
streambuf->cap = 0;
}
static void streambuf_clear_contents(struct streambuf *streambuf) {
streambuf->len = 0;
}
static bool endpoint_init(struct endpoint *ep) {
ep->fd = -1;
if (streambuf_init(&ep->incoming) == false)
return false;
if (streambuf_init(&ep->outgoing) == false) {
streambuf_free_contents(&ep->incoming);
return false;
}
return true;
}
static void endpoint_free_contents(struct endpoint *ep) {
if (ep->fd != -1) {
close(ep->fd);
ep->fd = -1;
}
streambuf_free_contents(&ep->incoming);
streambuf_free_contents(&ep->outgoing);
}
static void endpoint_clear_contents(struct endpoint *ep) {
ep->fd = -1;
streambuf_clear_contents(&ep->incoming);
streambuf_clear_contents(&ep->outgoing);
}
static int endpoint_flush(struct endpoint *ep) {
if (ep->outgoing.len == 0)
return 0;
ssize_t len = send(ep->fd, ep->outgoing.data, ep->outgoing.len, 0);
if (len == -1 && errno != EAGAIN && errno != EWOULDBLOCK) {
perror("endpoint_flush send");
return -1;
}
// Shift by however much was sent
memmove(ep->outgoing.data, ep->outgoing.data + len, ep->outgoing.len - len);
ep->outgoing.len -= len;
return len;
}
static int streambuf_ensure_capacity(struct streambuf *sb, size_t data_len) {
if (sb->cap - sb->len >= data_len)
return 0;
if (sb->len == 0) {
free(sb->data);
sb->data = malloc(data_len);
if (sb->data == NULL)
return -1;
sb->cap = data_len;
} else {
char *newbuf = realloc(sb->data, sb->len + data_len);
if (!newbuf)
return -1;
sb->data = newbuf;
sb->cap = sb->len + data_len;
}
return 0;
}
static ssize_t streambuf_enqueue(struct streambuf *sb, const void *data, size_t data_len) {
ssize_t out_len;
out_len = streambuf_ensure_capacity(sb, data_len);
if (out_len < 0)
return out_len;
memcpy(sb->data + sb->len, data, data_len);
sb->len += data_len;
return sb->len;
}
#define RECV_NO_LIMIT (-1)
// Read as much data as possible into a streambuf from a file descriptor.
// Return values the same as recv(), except that the length returned is the
// total length of available data (including any that was already buffered).
// limit parameter is the maximum amount of outstanding data that will be
// buffered before returning, or -1 for no limit.
// (Combining a limit with edge-triggered polling is likely to cause your end
// of a connection to hang; you'd better use level-triggering or close the
// connection if it exceeds your limit.)
static ssize_t streambuf_recv(struct streambuf *sb, int fd, ssize_t limit) {
ssize_t len;
size_t available;
do {
size_t new_capacity;
if (sb->len < 4096)
new_capacity = 4096;
else // TODO: Align to page size
new_capacity = sb->len * 2;
if (streambuf_ensure_capacity(sb, new_capacity) < 0)
return -1;
available = sb->cap - sb->len;
if (limit != -1 && available > limit)
available = limit;
len = recv(fd, sb->data + sb->len, available, 0);
if (len <= 0) {
if (sb->len > 0)
return sb->len;
return len;
}
sb->len += len;
if (limit != -1 && sb->len >= limit)
break;
} while (len == available);
return sb->len;
}
// Like send(2), but queues data if it cannot be sent immediately.
// Return values are as for send(2):
// Returns -1 on fatal error (eg. EBADF, ENOMEM)
// Returns >0 if data were successfully sent or queued;
// the return value is always data_len in this case.
// Returns 0 if the socket is closed on the remote end (?)
static ssize_t endpoint_send(struct endpoint *ep, const void *data, size_t data_len) {
if (ep->outgoing.len > 0)
return streambuf_enqueue(&ep->outgoing, data, data_len);
// Attempt immediate send
ssize_t sent_len = send(ep->fd, data, data_len, 0);
if (sent_len < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK)
return streambuf_enqueue(&ep->outgoing, data, data_len);
return sent_len; // error
}
if (sent_len == 0)
return 0;
if (sent_len < data_len)
streambuf_enqueue(&ep->outgoing, data + sent_len, data_len - sent_len);
return data_len;
}
// Remember to check for EAGAIN/EWOULDBLOCK when this returns -1.
// If you set a limit, make sure you don't retry indefinitely because of data
// waiting on the socket that you're not willing to read.
static ssize_t endpoint_recv(struct endpoint *ep, ssize_t limit) {
return streambuf_recv(&ep->incoming, ep->fd, limit);
}
static int job_send_status(struct job *job, int code, const char *msg) {
char buf[512];
ssize_t len = snprintf(buf, sizeof(buf), "HTTP/1.1 %d %s\r\n", code, msg);
if (len < 0 || endpoint_send(&job->client, buf, len) == -1)
return -1;
return 0;
}
static int job_terminate_headers(struct job *job) {
char term[2] = { '\r', '\n' };
if (endpoint_send(&job->client, term, sizeof(term)) == -1)
return -1;
return 0;
}
static int job_respond_status_only(struct job *job, int code, const char *msg) {
int rc = -1;
tcp_cork(job->client.fd);
if (job_send_status(job, code, msg) == -1)
goto cleanup;
const size_t msglen = strlen(msg);
char content_headers[256];
int len = snprintf(content_headers, sizeof(content_headers),
"Content-Type: text/plain; charset=us-ascii\r\n"
"Content-Length: %zu\r\n", msglen + 1);
if (len != -1 && len != sizeof(content_headers)) {
if (endpoint_send(&job->client, content_headers, len) == -1)
goto cleanup;
}
if (job_terminate_headers(job) == -1)
goto cleanup;
if (endpoint_send(&job->client, msg, msglen) == -1)
goto cleanup;
const char nl = '\n';
if (endpoint_send(&job->client, &nl, sizeof(nl)) == -1)
goto cleanup;
rc = 0;
cleanup:
tcp_uncork(job->client.fd);
return rc;
}
static struct job *new_job(int client) {
struct job *j = calloc(1, sizeof(*j));
if (j == NULL)
return NULL;
j->connect_attempts = 0;
j->backend_request.data = NULL;
j->backend_request.len = 0;
j->backend_request.remaining_len = 0;
if (endpoint_init(&j->client) == false) {
free(j);
return NULL;
}
j->client.fd = client;
if (endpoint_init(&j->backend) == false) {
endpoint_free_contents(&j->client);
free(j);
return NULL;
}
return j;
}
struct cpool_node {
int fd;
struct cpool_node *next;
};
struct connection_pool {
struct cpool_node *head;
struct addrinfo *addrs;
unsigned in_use_count, idle_count;
};
static struct connection_pool backend_pool;
static void setup_connection_pool(struct connection_pool *pool) {
pool->in_use_count = 0;
pool->idle_count = 0;
pool->head = NULL;
pool->addrs = NULL;
const struct addrinfo hints = {
.ai_flags = AI_V4MAPPED | AI_ADDRCONFIG,
.ai_family = AF_INET6,
.ai_socktype = SOCK_STREAM,
.ai_protocol = 0,
};
#define HOST "localhost"
#define SERVICE "23206"
int gaierr = getaddrinfo(HOST, SERVICE, &hints, &pool->addrs);
if (gaierr) {
fprintf(stderr, "Failed to resolve backend host: %s\n", gai_strerror(gaierr));
exit(1);
}
if (pool->addrs == NULL) {
fprintf(stderr, "No addresses\n");
exit(1);
}
}
static unsigned connection_pool_idle_count(struct connection_pool *pool) {
return pool->idle_count;
}
static void try_to_enable_fastopen_connect(int sock) {
#if defined(TCP_FASTOPEN_CONNECT)
const int yes = 1;
if (setsockopt(sock, IPPROTO_TCP, TCP_FASTOPEN_CONNECT, &yes, sizeof(yes)) == -1)
fatal_perror("setsockopt(TCP_FASTOPEN_CONNECT)");
#endif
}
static ssize_t connect_and_try_to_send(
int sock,
const struct sockaddr *addr,
socklen_t addrlen,
const void *data,
size_t len)
{
#if defined(TCP_FASTOPEN_CONNECT)
return sendto(sock, data, len, MSG_FASTOPEN, addr, addrlen);
#else
return connect(sock, addr, addrlen);
#endif
}
static ssize_t pool_new_connection_fastopen(
struct connection_pool *pool,
const void *data,
size_t len,
int *fdp)
{
// FIXME: Iterate over addresses
// (a little tricker with non-blocking connect)
struct addrinfo *addr = pool->addrs;
int sock = socket(addr->ai_family, addr->ai_socktype | SOCK_NONBLOCK | SOCK_CLOEXEC, addr->ai_protocol);
if (sock == -1) {
int save_errno = errno;
perror("Failed to allocate connection pool socket\n");
errno = save_errno;
return -1;
}
try_to_enable_fastopen_connect(sock);
// connect() (maybe TCP Fast Open)
ssize_t sent = connect_and_try_to_send(sock, addr->ai_addr, addr->ai_addrlen, data, len);
if (sent == -1 && (errno != EINPROGRESS && errno != EAGAIN && errno != EWOULDBLOCK)) {
int save_errno = errno;
#if defined(TCP_FASTOPEN_CONNECT)
perror("Failed to fastopen connect to backend");
#else
perror("Failed to connect to backend");
#endif
close(sock);
errno = save_errno;
return -1;
}
*fdp = sock;
++pool->in_use_count;
return sent;
}
// Optimized version of pool_delete_fd if the caller knows that the file was not
// on the idle list.
static void pool_delete_active_fd(struct connection_pool *pool, int fd __attribute__((unused))) {
--pool->in_use_count;
}
static int pool_get_idle_fd(struct connection_pool *pool) {
if (pool->head == NULL)
return -1;
--pool->idle_count;
struct cpool_node *n = pool->head;
pool->head = n->next;
int fd = n->fd;
free(n);
return fd;
}
static ssize_t pool_get_fd_fastopen(
struct connection_pool *pool,
const void *data,
size_t len,
int *fdp)
{
int fd = -1;
while ((fd = pool_get_idle_fd(pool)) != -1) {
ssize_t sent = send(fd, data, len, MSG_DONTWAIT);
if (sent >= 0 || (sent == -1 && (errno == EAGAIN || errno == EWOULDBLOCK))) {
// Socket seems good.
++pool->in_use_count;
*fdp = fd;
return sent;
}
if (sent == -1) {
// fd is bad
pool_delete_active_fd(pool, fd);
close(fd);
fd = -1;
}
}
return pool_new_connection_fastopen(pool, data, len, fdp);
}
static void subscribe(int epfd, int fd) {
struct epoll_event event = {
.events = 0,
.data = {
.u64 = 0,
},
};
if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &event) == -1)
fatal_perror("epoll_ctl subscribe");
}
static void unsubscribe(int epfd, int fd) {
if (epoll_ctl(epfd, EPOLL_CTL_DEL, fd, NULL) == -1)
perror("epoll_ctl DEL");
}
// use get_backend_fd_and_send to correctly track unsent bytes;
// it calls this.
static ssize_t get_backend_fd_fastopen(
int epfd,
struct connection_pool *pool,
const void *data,
size_t len,
int *fdp)
{
ssize_t sent = pool_get_fd_fastopen(pool, data, len, fdp);
if (sent == -1 && errno != EINPROGRESS && errno != EAGAIN && errno != EWOULDBLOCK)
return -1;
int save_errno = errno;
subscribe(epfd, *fdp);
errno = save_errno;
return sent;
}
static void delete_backend_fd(int epfd, struct connection_pool *pool, int fd) {
unsubscribe(epfd, fd);
pool_delete_active_fd(pool, fd);
close(fd);
}
struct free_job_node {
struct job *job;
struct free_job_node *next;
};
struct free_job_node *free_jobs = NULL;
static void free_closed_jobs() {
if (free_jobs == NULL)
return;
struct free_job_node *next = NULL;
for (struct free_job_node *n = free_jobs; n != NULL; n = next) {
free(n->job);
next = n->next;
free(n);
}
free_jobs = NULL;
}
static void free_job_later(struct job *job) {
for (struct free_job_node *n = free_jobs; n != NULL; n = n->next) {
if (n->job == job)
return; // already queued
}
struct free_job_node *n = malloc(sizeof(*n));
n->job = job;
n->next = free_jobs;
free_jobs = n;
}
static void close_job(int epfd, struct job *job) {
if (job->client.fd != -1) {
unsubscribe(epfd, job->client.fd);
close(job->client.fd);
job->client.fd = -1;
}
endpoint_free_contents(&job->client);
if (job->backend.fd != -1) {
// Kill the backend connection, it's the only way to cancel the
// request in HTTP/1.1. Waiting for it and draining it is a waste
// of time (potentially bigger).
delete_backend_fd(epfd, &backend_pool, job->backend.fd);
job->backend.fd = -1;
}
endpoint_free_contents(&job->backend);
free_job_later(job);
}
static void to_next_state(int epfd, struct job *job);
static int get_backend_fd_and_send(int epfd, struct job *job) {
assert(job->connect_attempts <= MAX_CONNECT_ATTEMPTS);
if (job->connect_attempts >= MAX_CONNECT_ATTEMPTS)
return -1;
int fd = -1;
if (connection_pool_idle_count(&backend_pool) == 0) {
// Only if the idle pool was empty should we count this as a new
// connection attempt. Otherwise a bunch of idle connections with broken
// pipes would be pinned on us and fail the request.
++job->connect_attempts;
}
ssize_t sent = get_backend_fd_fastopen(
epfd,
&backend_pool,
job->backend_request.data,
job->backend_request.len,
&fd);
if (sent == -1) {
if (errno == EINPROGRESS || errno == EAGAIN || errno == EWOULDBLOCK) {
assert(fd != -1);
return fd;
}
return -1;
}
assert(fd != -1);
job->backend_request.remaining_len -= sent;
return fd;
}
static struct cpool_node *new_pool_node(int fd) {
struct cpool_node *n = calloc(1, sizeof(*n));
n->fd = fd;
n->next = NULL;
return n;
}
static void pool_release_fd(struct connection_pool *pool, int fd) {
--pool->in_use_count;
++pool->idle_count;
// prepend node to list.
struct cpool_node *n = new_pool_node(fd);
n->next = pool->head;
pool->head = n;
}
static void release_backend_fd(int epfd, struct connection_pool *pool, int fd) {
unsubscribe(epfd, fd);
pool_release_fd(pool, fd);
}
// Prefer pool_delete_active_fd() if possible
__attribute__((unused))
static void pool_delete_fd(struct connection_pool *pool, int fd) {
// Figure out whether it was in use or idle
for (struct cpool_node *n = pool->head; n != NULL; n = n->next) {
if (n->fd == fd) {
--pool->idle_count;
return;
}
}
pool_delete_active_fd(pool, fd);
}
// Returns new length, or -1 on error
static ssize_t replace_string(char *buf, size_t buflen, size_t bufcap, const char *from, size_t fromlen, const char *to, size_t tolen) {
if (buflen - fromlen + tolen > bufcap)
return -1;
char *location = memmem(buf, buflen, from, fromlen);
if (location == NULL)
return -1;
const size_t trailer_len = buflen - (location - buf) - fromlen;
// shift keep-memory
memmove(location + tolen, location + fromlen, trailer_len);
// replace
memcpy(location, to, tolen);
return buflen - fromlen + tolen;
}
static void ep_mod_or_cleanup(int epfd, int fd, struct epoll_event *event) {
if (epoll_ctl(epfd, EPOLL_CTL_MOD, fd, event) == -1) {
perror("epoll_ctl MOD EPOLLOUT");
// This call might print spurious errors, but it's better than leaking.
close_job(epfd, (struct job*)event->data.ptr);
return;
}
}
static void setup_event(struct epoll_event *event, struct job *job, uint32_t events) {
event->events = events;
event->data.ptr = job;
}
static void notify_when_readable(int epfd, struct job *job, int fd) {
struct epoll_event event;
setup_event(&event, job, EPOLLIN | EPOLLONESHOT | EPOLLET);
ep_mod_or_cleanup(epfd, fd, &event);
}
static void notify_when_writable(int epfd, struct job *job, int fd) {
struct epoll_event event;
setup_event(&event, job, EPOLLOUT | EPOLLONESHOT);
ep_mod_or_cleanup(epfd, fd, &event);
}
static void clear_backend_request(struct job *job) {
job->backend_request.data = NULL;
job->backend_request.len = 0;
job->backend_request.remaining_len = 0;
}
static void discard_request_data(struct job *job) {
streambuf_advance(&job->client.incoming, job->backend_request.len);
clear_backend_request(job);
}
static enum state job_state(struct job *job) {
if (job->client.outgoing.len > 0)
return FRONTEND_WRITE_WAIT;
// This one is different; it writes straight from the backend_request
// pointer (which actually points into the client.incoming buffer).
if (job->backend_request.remaining_len > 0)
return BACKEND_WRITE_WAIT;
if (job->backend.fd != -1)
return BACKEND_READ_WAIT;
else
return FRONTEND_READ_WAIT;
}
static void poll_appropriate_fd(int epfd, struct job *job) {
switch (job_state(job)) {
case BACKEND_WRITE_WAIT:
notify_when_writable(epfd, job, job->backend.fd);
break;
case FRONTEND_WRITE_WAIT:
notify_when_writable(epfd, job, job->client.fd);
break;
case BACKEND_READ_WAIT:
notify_when_readable(epfd, job, job->backend.fd);
break;
case FRONTEND_READ_WAIT:
notify_when_readable(epfd, job, job->client.fd);
break;
}
}
// reset the job structure
static void finished_with_previous_request(int epfd, struct job *job) {
job->connect_attempts = 0;
discard_request_data(job);
// Don't accidentally close the backend fd, just unsubscribe.
if (job->backend.fd != -1) {
release_backend_fd(epfd, &backend_pool, job->backend.fd);
job->backend.fd = -1;
}
endpoint_clear_contents(&job->backend);
}
// This is meant to be a specialized, faster alternative to
// memmem(buf, len, "\r\n\r\n", 4) because memmem is really slow and we can make
// some educated guesses about the presence & location of newlines.
// Returns a pointer to the byte beyond the terminal "\n".
static char *find_end_of_header(char *buf, size_t len) {
char *last_nl = memrchr(buf, '\n', len);
if (last_nl == NULL)
return NULL;
// It's now safe to use rawmemchr() up to last_nl
// Linear search forward to the first "\n\r\n" (or "\n\n" to be permissive).
char *nl = NULL;
for (char *start = buf; (nl = rawmemchr(start, '\n')) != last_nl; start = nl + 1) {
if (nl[1] == '\n')
return nl + 2;
if (last_nl - nl >= 2) {
if (nl[1] == '\r' && nl[2] == '\n')
return nl + 3;
}
}
return NULL;
}
static void setup_backend_request(struct job *job, const char *end_of_request_header) {
job->backend_request.data = job->client.incoming.data;
job->backend_request.len = end_of_request_header - job->client.incoming.data;
job->backend_request.remaining_len = job->backend_request.len;
}
static void on_client_input(int epfd, struct job *job) {
ssize_t len = endpoint_recv(&job->client, MAX_PIPELINED_REQUEST_DATA);
if (len < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
perror("recv");
close_job(epfd, job);
return;
}
if (len == 0) {
// Client closed connection
close_job(epfd, job);
return;
}
if (len == MAX_PIPELINED_REQUEST_DATA) {
if (job_respond_status_only(job, 413, "Requests too big") == -1) {
close_job(epfd, job);
return;
}
close_job(epfd, job);
return;
}
// Beware that there might be a stack of pipelined requests waiting, so it's
// inappropriate to reject the connection for sending a request that's too
// big until we're sure it hasn't finished describing a single request yet.
char *end_of_request_header = find_end_of_header(job->client.incoming.data, job->client.incoming.len);
if (end_of_request_header == NULL) {
if (job->client.incoming.len > MAX_REQUEST_SIZE) {
if (job_respond_status_only(job, 413, "Request too big") == -1) {
close_job(epfd, job);
return;
}
// This is fairly abrupt, we try to tell the client that the request
// was too big, but they might not get the message if the socket
// wasn't ready. But they're misbehaving so we want to drop the
// ASAP.
close_job(epfd, job);
return;
}
// remains in client_read state; re-arm epoll
to_next_state(epfd, job);
return;
}
setup_backend_request(job, end_of_request_header);
// Grab a backend connection
endpoint_clear_contents(&job->backend);
job->backend.fd = get_backend_fd_and_send(epfd, job);
if (job->backend.fd == -1) {
clear_backend_request(job);
job_respond_status_only(job, 503, "Backend unavailable");
to_next_state(epfd, job);
return;
}
to_next_state(epfd, job);
}
static void send_backend_request(int epfd, struct job *job) {
ssize_t sent = send(
job->backend.fd,
job->backend_request.data + (job->backend_request.len - job->backend_request.remaining_len),
job->backend_request.remaining_len,
MSG_DONTWAIT);
if (sent == -1 && (errno != EAGAIN && errno != EWOULDBLOCK)) {
if (job_respond_status_only(job, 503, "Backend send failed") == -1) {
close_job(epfd, job);
return;
}
to_next_state(epfd, job);
return;
}
if (sent == -1)
return;
assert(sent <= job->backend_request.remaining_len);
job->backend_request.remaining_len -= sent;
}
static void state_to_backend_write(int epfd, struct job *job) {
poll_appropriate_fd(epfd, job);
}
static void state_to_backend_read(int epfd, struct job *job) {
poll_appropriate_fd(epfd, job);
}
static void state_to_client_write(int epfd, struct job *job) {
poll_appropriate_fd(epfd, job);
}
static void state_to_client_read(int epfd, struct job *job) {
finished_with_previous_request(epfd, job);
// If there's data in the pipe go inspect it to see if it contains a full
// request already (eg. pipelined request).
if (job->client.incoming.len > 0) {
on_client_input(epfd, job);
return;
}
poll_appropriate_fd(epfd, job);
}
static void to_next_state(int epfd, struct job *job) {
assert(job->client.fd != -1);
switch (job_state(job)) {
case FRONTEND_WRITE_WAIT:
state_to_client_write(epfd, job);
break;
case BACKEND_WRITE_WAIT: