Skip to content

Commit e517880

Browse files
authored
Merge pull request #387 from tidymodels/0.1.4-RC
0.1.4 RC
2 parents 53722db + 20a3c9c commit e517880

File tree

4 files changed

+7
-7
lines changed

4 files changed

+7
-7
lines changed

DESCRIPTION

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Package: parsnip
2-
Version: 0.1.3.9000
2+
Version: 0.1.4
33
Title: A Common API to Modeling and Analysis Functions
44
Description: A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc).
55
Authors@R: c(

NEWS.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# parsnip (development version)
1+
# parsnip 0.1.4
22

33
* `show_engines()` will provide information on the current set for a model.
44

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -141,11 +141,11 @@ rand_forest(mtry = 10, trees = 2000) %>%
141141
fit(mpg ~ ., data = mtcars)
142142
#> parsnip model object
143143
#>
144-
#> Fit time: 98ms
144+
#> Fit time: 71ms
145145
#> Ranger result
146146
#>
147147
#> Call:
148-
#> ranger::ranger(formula = mpg ~ ., data = data, mtry = ~10, num.trees = ~2000, importance = ~"impurity", num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
148+
#> ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~10, x), num.trees = ~2000, importance = ~"impurity", num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
149149
#>
150150
#> Type: Regression
151151
#> Number of trees: 2000

vignettes/parsnip_Intro.Rmd

+3-3
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,7 @@ rf_with_seed %>%
109109
#> Ranger result
110110
#>
111111
#> Call:
112-
#> ranger::ranger(formula = formula, data = data, mtry = ~4, num.trees = ~2000, seed = sample.int(10^5, 1), num.threads = 1, verbose = FALSE)
112+
#> ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~4, x), num.trees = ~2000, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
113113
#>
114114
#> Type: Regression
115115
#> Number of trees: 2000
@@ -138,7 +138,7 @@ rf_with_seed %>%
138138
#>
139139
#>
140140
#> Call:
141-
#> randomForest(x = as.data.frame(x), y = y, ntree = ~2000, mtry = ~4)
141+
#> randomForest(x = maybe_data_frame(x), y = y, ntree = ~2000, mtry = min_cols(~4, x))
142142
#> Type of random forest: regression
143143
#> Number of trees: 2000
144144
#> No. of variables tried at each split: 4
@@ -149,7 +149,7 @@ rf_with_seed %>%
149149

150150
Note that the call objects show `num.trees = ~2000`. The tilde is the consequence of `parsnip` using [quosures](https://adv-r.hadley.nz/evaluation.html#quosures) to process the model specification's arguments.
151151

152-
Normally, when a function is executed, the function's arguments are immediately evaluated. In the case of `parsnip`, the model specification's arguments are _not_; the [expression is captured](https://www.tidyverse.org/articles/2019/04/parsnip-internals/) along with the environment where it should be evaluated. That is what a quosure does.
152+
Normally, when a function is executed, the function's arguments are immediately evaluated. In the case of `parsnip`, the model specification's arguments are _not_; the [expression is captured](https://www.tidyverse.org/blog/2019/04/parsnip-internals/) along with the environment where it should be evaluated. That is what a quosure does.
153153

154154
`parsnip` uses these expressions to make a model fit call that is evaluated. The tilde in the call above reflects that the argument was captured using a quosure.
155155

0 commit comments

Comments
 (0)