This repository was archived by the owner on Aug 31, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
312 lines (267 loc) · 9.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Miscellaneous utility functions.
"""
def copy_files(in_file, output_dir):
from os import mkdir
import os.path as op
from shutil import copyfile
fn = op.basename(in_file)
out_file = op.join(output_dir, fn)
if not op.isdir(output_dir):
mkdir(output_dir)
copyfile(in_file, out_file)
return out_file
def get_motpar_name(source_file):
import os.path as op
from nipype.utils.filemanip import split_filename
_, base, _ = split_filename(source_file)
out_file = op.abspath(base + '_motpars.1D')
return out_file
def recover_kspace(magnitude, phase, out_real_file=None, out_imag_file=None):
"""
Convert raw magnitude and phase data into effective k-space data, split
into real and imaginary components.
"""
import numpy as np
import nibabel as nib
import os.path as op
from nipype.utils.filemanip import split_filename
from nilearn._utils import check_niimg
from complex_utils import to_complex
magnitude_img = check_niimg(magnitude)
phase_img = check_niimg(phase)
phase_data = phase_img.get_fdata()
magnitude_data = magnitude_img.get_fdata()
kspace_data = np.zeros(phase_data.shape, dtype=complex)
cmplx_data = to_complex(magnitude_data, phase_data)
for i_vol in range(cmplx_data.shape[3]):
for j_slice in range(cmplx_data.shape[2]):
slice_data = cmplx_data[:, :, j_slice, i_vol]
slice_kspace = np.fft.ifft(slice_data)
kspace_data[:, :, j_slice, i_vol] = slice_kspace
kspace_real_data, kspace_imag_data = kspace_data.real, kspace_data.imag
kspace_real_img = nib.Nifti1Image(
kspace_real_data, magnitude_img.affine, magnitude_img.header
)
kspace_imag_img = nib.Nifti1Image(
kspace_imag_data, magnitude_img.affine, magnitude_img.header
)
if out_real_file is None:
_, base, _ = split_filename(magnitude)
out_real_file = op.abspath(base + '_real.nii.gz')
if out_imag_file is None:
_, base, _ = split_filename(magnitude)
out_imag_file = op.abspath(base + '_imag.nii.gz')
kspace_real_img.to_filename(out_real_file)
kspace_imag_img.to_filename(out_imag_file)
return out_real_file, out_imag_file
def convert_to_radians(phase, out_file=None):
"""
Adapted from
https://github.com/poldracklab/sdcflows/blob/
659c2508ecef810c3acadbe808560b44d22801f9/sdcflows/interfaces/fmap.py#L94
Ensure that phase images are in a usable range for unwrapping.
From the FUGUE User guide::
If you have seperate phase volumes that are in integer format then do:
fslmaths orig_phase0 -mul 3.14159 -div 2048 phase0_rad -odt float
fslmaths orig_phase1 -mul 3.14159 -div 2048 phase1_rad -odt float
Note that the value of 2048 needs to be adjusted for each different
site/scanner/sequence in order to be correct. The final range of the
phase0_rad image should be approximately 0 to 6.28. If this is not the
case then this scaling is wrong. If you have separate phase volumes are
not in integer format, you must still check that the units are in
radians, and if not scale them appropriately using fslmaths.
"""
import os.path as op
import numpy as np
import nibabel as nib
from nipype.utils.filemanip import split_filename
from nilearn._utils import check_niimg
phase_img = check_niimg(phase)
phase_data = phase_img.get_fdata()
imax = phase_data.max()
imin = phase_data.min()
scaled = (phase_data - imin) / (imax - imin)
rad_data = 2 * np.pi * scaled
out_img = nib.Nifti1Image(rad_data, phase_img.affine, phase_img.header)
if out_file is None:
_, base, _ = split_filename(phase)
out_file = op.abspath(base + '_rescaled.nii.gz')
out_img.to_filename(out_file)
return out_file
def get_fmap_tediff(metadata):
"""
Get difference in field map phase images' echo times.
"""
delta_te = metadata['EchoTime2'] - metadata['EchoTime1']
return delta_te
def compute_phasediff(phase_files, phase_metadata, out_file=None):
"""
Compute phase-difference image in rad/s from two phase files in rad/s.
"""
import os.path as op
import nibabel as nib
from nipype.utils.filemanip import split_filename
# Select first two echoes
phase_files = phase_files[:2]
phase_metadata = phase_metadata[:2]
imgs = [nib.load(pf) for pf in phase_files]
data = [img.get_data() for img in imgs]
te_diff = 1000.0 * (phase_metadata[1]['EchoTime'] -
phase_metadata[0]['EchoTime'])
data = 1000.0 * (data[1] - data[0]) / te_diff
out_img = nib.Nifti1Image(data, imgs[0].affine, imgs[0].header)
if out_file is None:
_, base, _ = split_filename(phase_files[0])
out_file = op.abspath(base + '_phasediff.nii.gz')
out_img.to_filename(out_file)
return out_file
def fake_unwrap(magnitude, phase):
"""
An identity function used as a placeholder for PRELUDE,
which can take a long time.
"""
unwrapped_phase_file = phase
return unwrapped_phase_file
def get_slice_timing(metadata):
"""
Get slice timing information (in seconds) from metadata dictionary.
"""
return metadata['SliceTiming']
def pick_first(func):
"""
Used to grab first echo for multi-echo data
"""
if isinstance(func, list):
return func[0]
else:
return func
def pick_second(func):
"""
Used to grab second echo for multi-echo data
"""
if isinstance(func, list):
return func[1]
else:
return func
def get_other_echoes(layout, func_obj):
"""
Get full set of multi-echo fMRI files associated with one of the files.
"""
entity_dict = func_obj.get_entities().copy()
entity_dict.pop('echo')
files = []
for echo in sorted(layout.get_echoes(**entity_dict)):
bold_mag_files = layout.get(echo=echo, **entity_dict)
assert len(bold_mag_files) == 1
files.append(bold_mag_files[0])
return files
def get_phase(layout, func_obj):
"""
Get phase file associated with a given BOLD file.
"""
entity_dict = func_obj.get_entities().copy()
entity_dict.pop('suffix')
files = layout.get(suffix='phase', **entity_dict)
assert len(files) <= 1
if len(files) == 0:
return None
else:
file_ = files[0]
return file_
def get_sbref(layout, func_obj, reconstruction='magnitude'):
"""
Get single-band reference image associated with a functional run.
"""
entity_dict = func_obj.get_entities().copy()
entity_dict.pop('suffix')
files = layout.get(suffix='sbref', reconstruction=reconstruction,
**entity_dict)
assert len(files) <= 1
if len(files) == 0:
return None
else:
file_ = files[0]
return file_
def collect_data(layout, participant_label, ses=None, task=None, run=None):
"""
Collect required data from the dataset.
"""
# get all the preprocessed fmri images.
bold_query = {
'subject': participant_label,
'datatype': 'func',
'suffix': 'bold',
'extension': ['nii', 'nii.gz'],
'echo': 1,
}
t1w_query = {
'subject': participant_label,
'datatype': 'anat',
'suffix': 'T1w',
'extension': ['nii', 'nii.gz'],
}
t2w_query = {
'subject': participant_label,
'datatype': 'anat',
'suffix': 'T2w',
'extension': ['nii', 'nii.gz'],
}
if task:
bold_query['task'] = task
if run:
bold_query['run'] = run
if ses:
bold_query['session'] = ses
first_echo_files = layout.get(**bold_query)
bold_mag_files = [get_other_echoes(layout, f) for f in first_echo_files]
bold_phase_files = [
[get_phase(layout, f) for f in r] for r in bold_mag_files
]
sbref_mag_files = [
[get_sbref(layout, f, reconstruction='magnitude') for f in r]
for r in bold_mag_files
]
sbref_phase_files = [
[get_sbref(layout, f, reconstruction='phase') for f in r]
for r in bold_mag_files
]
t1w_files = layout.get(**t1w_query)
t2w_files = layout.get(**t2w_query)
# Convert BIDS files to strings
bold_mag_files = [[f.path for f in r] for r in bold_mag_files]
bold_phase_files = [[f.path for f in r] for r in bold_phase_files]
sbref_mag_files = [[f.path for f in r] for r in sbref_mag_files]
sbref_phase_files = [[f.path for f in r] for r in sbref_phase_files]
t1w_files = [f.path for f in t1w_files]
t2w_files = [f.path for f in t2w_files]
bold_mag_metadata = [
[layout.get_metadata(f) for f in r] for r in bold_mag_files
]
bold_phase_metadata = [
[layout.get_metadata(f) for f in r] for r in bold_phase_files
]
sbref_mag_metadata = [
[layout.get_metadata(f) for f in r] for r in sbref_mag_files
]
sbref_phase_metadata = [
[layout.get_metadata(f) for f in r] for r in sbref_phase_files
]
t1w_metadata = [layout.get_metadata(f) for f in t1w_files]
t2w_metadata = [layout.get_metadata(f) for f in t2w_files]
# Compile into dictionary
data = {
'bold_mag_files': bold_mag_files,
'bold_mag_metadata': bold_mag_metadata,
'bold_phase_files': bold_phase_files,
'bold_phase_metadata': bold_phase_metadata,
'sbref_mag_files': sbref_mag_files,
'sbref_mag_metadata': sbref_mag_metadata,
'sbref_phase_files': sbref_phase_files,
'sbref_phase_metadata': sbref_phase_metadata,
't1w_files': t1w_files,
't1w_metadata': t1w_metadata,
't2w_files': t2w_files,
't2w_metadata': t2w_metadata,
}
return data