-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgyro_accelerometer_tutorial01.c
156 lines (107 loc) · 3.45 KB
/
gyro_accelerometer_tutorial01.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
This program reads the angles from the accelerometer and gyroscope
on a BerryIMU connected to a Raspberry Pi.
The BerryIMUv1, BerryIMUv2 and BerryIMUv3 are supported.
Feel free to do whatever you like with this code
Distributed as-is; no warranty is given.
https://ozzmaker.com/berryimu/
*/
#include <sys/time.h>
#include <stdint.h>
#include <unistd.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <time.h>
#include "IMU.c"
#define DT 0.02 // [s/loop] loop period. 20ms
#define AA 0.97 // complementary filter constant
#define A_GAIN 0.0573 // [deg/LSB]
#define G_GAIN 0.070 // [deg/s/LSB]
#define RAD_TO_DEG 57.29578
#define M_PI 3.14159265358979323846
void INThandler(int sig)// Used to do a nice clean exit when Ctrl-C is pressed
{
signal(sig, SIG_IGN);
exit(0);
}
int mymillis()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec) * 1000 + (tv.tv_usec)/1000;
}
int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1)
{
long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec);
result->tv_sec = diff / 1000000;
result->tv_usec = diff % 1000000;
return (diff<0);
}
int main(int argc, char *argv[])
{
float rate_gyr_y = 0.0; // [deg/s]
float rate_gyr_x = 0.0; // [deg/s]
float rate_gyr_z = 0.0; // [deg/s]
int accRaw[3];
int magRaw[3];
int gyrRaw[3];
float gyroXangle = 0.0;
float gyroYangle = 0.0;
float gyroZangle = 0.0;
float AccYangle = 0.0;
float AccXangle = 0.0;
float CFangleX = 0.0;
float CFangleY = 0.0;
int startInt = mymillis();
struct timeval tvBegin, tvEnd,tvDiff;
signal(SIGINT, INThandler);
detectIMU();
enableIMU();
gettimeofday(&tvBegin, NULL);
while(1)
{
startInt = mymillis();
//read ACC and GYR data
readACC(accRaw);
readGYR(gyrRaw);
//Convert Gyro raw to degrees per second
rate_gyr_x = (float) gyrRaw[0] * G_GAIN;
rate_gyr_y = (float) gyrRaw[1] * G_GAIN;
rate_gyr_z = (float) gyrRaw[2] * G_GAIN;
//Calculate the angles from the gyro
gyroXangle+=rate_gyr_x*DT;
gyroYangle+=rate_gyr_y*DT;
gyroZangle+=rate_gyr_z*DT;
//Convert Accelerometer values to degrees
AccXangle = (float) (atan2(accRaw[1],accRaw[2])+M_PI)*RAD_TO_DEG;
AccYangle = (float) (atan2(accRaw[2],accRaw[0])+M_PI)*RAD_TO_DEG;
//Change the rotation value of the accelerometer to -/+ 180 and move the Y axis '0' point to up.
//Two different pieces of code are used depending on how your IMU is mounted.
//If IMU is upside down
/*
if (AccXangle >180)
AccXangle -= (float)360.0;
AccYangle-=90;
if (AccYangle >180)
AccYangle -= (float)360.0;
*/
//If IMU is up the correct way, use these lines
AccXangle -= (float)180.0;
if (AccYangle > 90)
AccYangle -= (float)270;
else
AccYangle += (float)90;
//Complementary filter used to combine the accelerometer and gyro values.
CFangleX=AA*(CFangleX+rate_gyr_x*DT) +(1 - AA) * AccXangle;
CFangleY=AA*(CFangleY+rate_gyr_y*DT) +(1 - AA) * AccYangle;
printf (" GyroX %7.3f \t AccXangle \e[m %7.3f \t \033[22;31mCFangleX %7.3f\033[0m\t GyroY %7.3f \t AccYangle %7.3f \t \033[22;36mCFangleY %7.3f\t\033[0m\n",gyroXangle,AccXangle,CFangleX,gyroYangle,AccYangle,CFangleY);
//Each loop should be at least 20ms.
while(mymillis() - startInt < (DT*1000)){
usleep(100);
}
printf("Loop Time %d\t", mymillis()- startInt);
}
}