diff --git a/HTMLversion/HTML/mean_gammas.htm b/HTMLversion/HTML/mean_gammas.htm index 15cb2f8b8..837eebc35 100644 --- a/HTMLversion/HTML/mean_gammas.htm +++ b/HTMLversion/HTML/mean_gammas.htm @@ -19,7 +19,7 @@ .shape {behavior:url(#default#VML);} - REACTION +MEAN_GAMMAS + Description of Data Input + + + + + + + + + + + + + + +
+ +
+ +
+ +
+ +

| Next || Previous +|| Top |

+ +

Description of Data Input

+ +

The input for PHREEQC is +arranged by keyword data blocks. Each data block begins with a line that +contains the keyword (and possibly additional data) followed by additional +lines containing data related to the keyword. The keywords that define the +input data for running the program are listed in table 1. Keywords and their associated +data are read from a database file at the beginning of a run to define the +elements, exchange reactions, surface complexation reactions, mineral phases, +gas components, and rate expressions. Any data items read from the database +file can be redefined by keyword data blocks in the input file. After the +database file is read, data are read from the input file until the first END keyword is encountered, after +which the specified calculations are performed. The process of reading data +from the input file until an END, +followed by doing the calculations, is repeated until the end of the input file +is encountered. The set of calculations, defined by keyword data blocks +terminated by an END, is termed a +“simulation”. A “run” is a series of one or more simulations that are contained +in the same input data file and calculated during the same invocation of the +program PHREEQC.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Table 1. List of keyword data + blocks.

+
+

Keyword data block

+
+

Function

+
+

ADVECTION +

+
+

Specify parameters for + advective-reactive transport, no dispersion

+
+

CALCULATE_VALUES +

+
+

Define Basic functions

+
+

COPY

+
+

Make copies of keyword data + blocks with new identifying numbers

+
+

DATABASE

+
+

Specify the database for + the simulations

+
+

DELETE

+
+

Delete specified reactants

+
+

DUMP

+
+

Write complete descriptions + of specified reactants to file (or to a string for IPhreeqc modules)

+
+

END

+
+

Demarcate end of a + simulation

+
+

EQUILIBRIUM_PHASES +

+
+

Define assemblage of + minerals and gases to react with an aqueous solution

+
+

EXCHANGE

+
+

Define exchange assemblage + composition

+
+

EXCHANGE_MASTER_SPECIES +

+
+

Identify exchange sites and + corresponding exchange master species

+
+

EXCHANGE_SPECIES +

+
+

Define association half-reaction + and thermodynamic data for exchange species

+
+

GAS_PHASE +

+
+

Define a gas-phase + composition

+
+

INCLUDE$

+
+

Insert a file into the + input or database file

+
+

INCREMENTAL_REACTIONS +

+
+

Define whether reaction + increments are incremental or cumulative

+
+

INVERSE_MODELING +

+
+

Specify solutions, + reactants, and parameters for mole-balance modeling

+
+

ISOTOPES

+
+

Identify isotopes of + elements and define the absolute isotopic ratio of standards

+
+

ISOTOPE_ALPHAS +

+
+

Specify fractionation factors + to appear in the output file

+
+

ISOTOPE_RATIOS +

+
+

Specify isotope ratios to + appear in the output file

+
+

KINETICS

+
+

Specify kinetic reactions + and define parameters

+
+

KNOBS

+
+

Define parameters for numerical + method and printing debugging information

+
+

LLNL_AQUEOUS_MODEL_PARAMETERS +

+
+

Specify activity + coefficient parameters for the Lawrence Livermore National Laboratory aqueous + model

+
+

MEAN_GAMMAS

+
+

Specify list of salts for which mean activity coefficients can + be calculated.

+
+

MIX

+
+

Define mixing fractions of + aqueous solutions

+
+

MIX_EQUILIBRIUM_PHASES +

+
+

Define + new equilibrium phases by mixing previously defined equilibrium phases

+
+

MIX_EXCHANGE +

+
+

Define + new exchange by mixing previously defined exchanges

+
+

MIX_GAS_PHASE +

+
+

Define + new gas phas by mixing previously defined gas phases

+
+

MIX_KINETICS +

+
+

Define + new kinetics by mixing previously defined kinetics

+
+

MIX_SOLID_SOLUTION +

+
+

Define new + solid solution by mixing previously defined solid solutions

+
+

MIX_SOLUTION +

+
+

Define + new solution by mixing previously defined solutions

+
+

MIX_SURFACE +

+
+

Define + new surface by mixing previously defined surfaces

+
+

MIX_EQUILIBRIUM_PHASES +

+
+

Assigns a name to an + analytical expression for an equilibrium constant or isotope fractionation + factor

+
+

PHASES

+
+

Define dissociation + reactions and thermodynamic data for minerals and gases

+
+

PITZER

+
+

Specify the parameters of a + Pitzer specific-ion-interaction aqueous model

+
+

PRINT

+
+

Select data blocks to be + printed to the output file

+
+

RATE_PARAMETERS_HERMANSKA

+
+

Table of rate parameters in the style of Hermanska and others + (2023)

+
+

RATE_PARAMETERS_PK

+
+

Table of rate parameters in the style of Palandri and Kharaka + (2004)

+
+

RATE_PARAMETERS_SVD

+
+

Table of rate parameters in the style of Sverdrup and others + (2019)

+
+

RATES

+
+

Define rate equations with + Basic language statements

+
+

REACTION

+
+

Specify irreversible + reactions

+
+

REACTION_PRESSURE +

+
+

Specify pressure(s) for + batch reactions

+
+

REACTION_TEMPERATURE +

+
+

Specify temperature(s) for + batch reactions

+
+

RUN_CELLS +

+
+

Specify a reaction + simulation that includes all reactants of a given identification number

+
+

SAVE

+
+

Save results of batch + reactions for use in subsequent simulations

+
+

SELECTED_OUTPUT +

+
+

Print specified quantities + to a user-defined file

+
+

SIT

+
+

Specify the parameters of a + SIT (Specific ion Interaction Theory) aqueous model

+
+

SOLID_SOLUTIONS +

+
+

Define the composition of a + solid-solution assemblage

+
+

SOLUTION

+
+

Define the composition of + an aqueous solution

+
+

SOLUTION_MASTER_SPECIES +

+
+

Identify elements and + corresponding aqueous master species

+
+

SOLUTION_SPECIES +

+
+

Define association reaction + and thermodynamic data for aqueous species

+
+

SOLUTION_SPREAD +

+
+

Define one or more aqueous + solution compositions using a tab-delimited format (Alternative input format + for SOLUTION )

+
+

SURFACE

+
+

Define the composition of + an assemblage of surfaces

+
+

SURFACE_MASTER_SPECIES +

+
+

Identify surface sites and + corresponding surface master species

+
+

SURFACE_SPECIES +

+
+

Define association reaction + and thermodynamic data for surface species

+
+

TITLE

+
+

Specify a text string to be + printed in the output file

+
+

TRANSPORT +

+
+

Specify parameters for + advective-dispersive-reactive transport, optionally with dual porosity

+
+

USE

+
+

Select aqueous solution or + other reactants that define batch reactions

+
+

USER_GRAPH +

+
+

Specify data and parameters + for a user-defined X-Y plot

+
+

USER_PRINT +

+
+

Print user-defined + quantities to the output file

+
+

USER_PUNCH +

+
+

Print user-defined + quantities to the selected-output file

+
+ +

Each simulation may contain +one or more of seven types of speciation, batch-reaction, and transport calculations: +(1) initial solution speciation, (2) determination of the composition of an +exchange assemblage in equilibrium with a fixed solution composition, (3) +determination of the composition of a surface assemblage in equilibrium with a +fixed solution composition, (4) determination of the composition of a +fixed-volume gas phase in equilibrium with a fixed solution composition, (5) +calculation of chemical composition as a result of batch reactions, which +include mixing; kinetically controlled reactions; net addition or removal of +elements from solution, termed “net stoichiometric reaction”; variation in +temperature and pressure; equilibration with assemblages of pure phases, +exchangers, surfaces, and (or) solid solutions; and equilibration with a gas phase +at a fixed total pressure or fixed volume, (6) advective-reactive transport, or +(7) advective-dispersive-reactive transport. The combination of capabilities +allows the modeling of complex geochemical reactions and transport processes +during one or more simulations.

+ +

In addition to speciation, +batch-reaction, and transport calculations, the code may be used for inverse +modeling, by which net chemical reactions are deduced that account for +composition differences between an initial water or a mixture of initial waters +and a final water.

+ +
+ +

Conventions for Data +Input

+ +

PHREEQC was designed to +eliminate some of the input errors due to complicated data formatting in Fortran-type +input files. Data for the program are free format; spaces or tabs may be used +to delimit input fields (except SOLUTION_SPREAD, +which is delimited only with tabs); blank lines are ignored. Keyword data +blocks within a simulation may be entered in any order. However, data elements +entered on a single line are order specific. As much as possible, the program +is case insensitive. However, chemical formulas are case sensitive.

+ +

The following conventions are +used for data input to PHREEQC:

+ +

Keywords --Input data blocks are identified with an initial keyword. This +word must be spelled exactly, although case is not important. Several of the +keywords have synonyms. For example, PURE_PHASES is a synonym +for EQUILIBRIUM_PHASES.

+ +

Identifiers --Identifiers are options that may be used within a keyword data +block. Identifiers may have two forms: (1) they may be spelled completely and +exactly (case insensitive) or (2) they may be preceded by a hyphen and then +only enough characters to uniquely define the identifier are needed. The form +with the hyphen is always acceptable and is recommended. Usually, the form +without the hyphen is acceptable, but in some cases the hyphen is needed to +indicate the word is an identifier rather than an identically spelled keyword; +these cases are noted in the definitions of the identifiers in the following +sections. In this report, the form with the hyphen is used except for +identifiers of the SOLUTION +keyword and the identifiers log_k and delta_h +. The hyphen in the identifier never implies that the negative of a quantity is +entered.

+ +

Chemical +equations --For aqueous, exchange, and +surface species, chemical reactions must be association reactions, +with the defined species occurring in the first position after the equal sign. +For phases, chemical reactions must be dissolution reactions with the +formula for the defined phase occurring in the first position on the left-hand +side of the equation. Additional terms on the left-hand side are allowed. All +chemical equations must contain an equal sign, “=”. In addition, left- and right-hand +sides of all chemical equations must balance in numbers of atoms of each +element and total charge. All equations are checked for these criteria at +runtime, unless they are specifically excepted. Nested parentheses in chemical +formulas are acceptable. Spaces and tabs within chemical equations are ignored. +Waters of hydration and other chemical formulas (that are normally represented +by a “ · ”, as in the formula for gypsum, CaSO 4 ·2H 2 O) +are designated with a colon (“:”) in PHREEQC (thus, CaSO 4 :2H +2 O), but only one colon per formula is permitted.

+ +

Element +names --Two forms of element names +are available (1) those beginning with an alphabetic character and (2) those +beginning with a square bracket. For form 1, an element formula, wherever it is +used, must begin with a capital letter and may be followed by one or more +lowercase letters or underscores, “_”. Numbers are not permitted, except in +parentheses for defining the redox state. In general, element names are simply +the chemical symbols for elements, which have a capital letter and zero or one +lower case letter. It is sometimes useful to define other entities as elements, +which allows mole balance and mass-action equations to be applied. Thus, +“Fulvate” is an acceptable element name, and it would be possible to define +metal binding constants in terms of metal-Fulvate complexes.

+ +

Form 2 of element names is +less restrictive than form 1. Within the square brackets, any combination of +alphanumeric characters and the characters plus, minus, equal, colon, decimal +point, and underscore can be used. The form-2 element name is case dependent, +but upper and lower case characters can be used in any position. The iso.dat +database makes extensive use of the square-bracket form for element names by +using the mass number and chemical symbol for minor-isotope definitions, such +as [13C], [15N], and [34S].

+ +

Charge on a +chemical species --The charge on a species +may be defined by the proper number of pluses or minuses following the chemical +formula or by a single plus or minus followed by an integer designating the +charge. Either of the following is acceptable, Al+3 or Al+++. However, Al3+ +would be interpreted as a molecule with three aluminum atoms and a charge of +plus one.

+ +

Valence +states --Redox elements that exist +in more than one valence state in solution are identified for definition of +solution composition by the element name followed by a valence in parentheses. +Thus, sulfur that exists as sulfate is defined as S(6) and total sulfide (H +2 S, HS - , and others) is identified by S(-2). The valence +may include a decimal point. The valence number is for identification purposes +only and does not otherwise affect the calculations.

+ +

log K and +temperature dependence --The +identifier log_k is used to define the log K at 25 °C +for a reaction. The temperature dependence for log K may be defined by +the Van’t Hoff expression or by an analytical expression. The identifier delta_h +is used to give the standard enthalpy of reaction at 25 °C for a chemical +reaction, which is used in the Van’t Hoff equation. By default the units of the +standard enthalpy are kilojoule per mole (kJ/mol). Optionally, for each +reaction the units may be defined to be kilocalorie per mole (kcal/mol). An +analytical expression for the temperature dependence of log K for a +reaction may be defined with the -analytical_expression +identifier. Up to six numbers may be given, which are the coefficients for the +equation: , where T is in kelvin. A log K is defined either with log_k +or -analytical_expression (default log_k is +zero); the enthalpy is optional (default is zero). If present, an analytical +expression is used in preference to the log_k and enthalpy +values for calculation of the log K at the specified temperature.

+ +

Pressure +dependence of log K --Pressure dependency of +reaction constants for species, and the pressure-dependent solubilities of +minerals and gases, are calculated from the volume change of the reaction. The +molar volume of solids and parameters for calculating the molal volume of aqueous +species are defined in Amm.dat, phreeqc.dat, and pitzer.dat.

+ +

Comments --The “#” character delimits the beginning of a comment in the input +file. All characters in the line that follow this character are ignored. If the +entire line is a comment, the line is not echoed to the output file. If the +comment follows input data on a line, the entire line, including the comment, +is echoed to the output file. The “#” is useful for adding comments explaining +the source of various data or describing the problem setup. In addition, it is +useful for temporarily removing lines from an input file.

+ +

Logical +line separator --A semicolon (“;”) is +interpreted as a logical end-of-line character. This allows multiple logical +lines to be entered on the same physical line. For example, solution data could +be entered as:

+ +
pH 7.0; pe 4.0; temp 25.0
+ +

on one line. The semicolon should not be used in character fields, +such as the title or other comment or description fields.

+ +

Logical line continuation --A +backslash (“\”) at the end of a line may be used to merge two physical lines into +one logical line. For example, a long chemical equation could be entered as:

+ +
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = \
0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
 
+ +

on two lines. The program would interpret this sequence as a +balanced equation entered on a single logical line. For a line to be logically +continued, the backslash must be the last character in the line except for +white space.

+ +

Repeat count --An +asterisk (“*”) can be used to indicate a repeat count for the data item that +follows the asterisk. The format is an integer followed directly by the +asterisk, which is followed directly by a numeric value. For example “4*1.0” is +the same as entering four values of 1.0 (“1.0 1.0 1.0 1.0”). Repeat counts can +be used for specifying data for the identifiers -length and -dispersivity +in the TRANSPORT data block and +for specifying reaction steps in the REACTION +and KINETICS data blocks.

+ +

Range of integers --A hyphen +(“-”) can be used to indicate a range of integers for the keywords with an +identification number (for example, SOLUTION +2-5). It is also possible to define a range of cell numbers for the identifiers +-print_cells and -punch_cells in the ADVECTION and TRANSPORT data blocks and in the +options for the COPY, DELETE, DUMP, and RUN_CELLS data blocks. A range of +integers is given in the form m-n +, where m and n are positive integers, m +is less than n , and the two numbers are separated by a hyphen without +intervening spaces.

+ +

Special characters --A +summary of all of the special characters used in PHREEQC formatting is given in +table 2.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Table 2. Summary of special + characters for input data files.

+
+

Special character

+
+

Use

+
+
-
+
+

When preceding a character + string, a hyphen indicates an identifier (option) for a keyword.

+
+
-
+
+

Indicates a range of cell numbers + for keyword data blocks (for example, SOLUTION 2-5), for + identifiers -print_cells and -punch_cells + in the ADVECTION and TRANSPORT data blocks, + and for identifiers in the COPY , DELETE , DUMP + , and RUN_CELLS data blocks.

+
+
:
+
+

In a chemical equation, “:” + replaces “ . ” in a formula like CaSO 4 . + 2H 2 O.

+
+
[ ]
+
+

Used to define element + names including numeric and a limited set of special characters (+-._:).

+
+
( )
+
+

The redox state of an + element is defined by a valence enclosed by parentheses following an element + name.

+
+
#
+
+

Comment character, all + characters following # are ignored.

+
+
;
+
+

Logical line separator.

+
+
\
+
+

Line continuation if “\” is + the last non-white-space character of a line.

+
+
*
+
+

Can be used to indicate a + repeat count for -length and -dispersivity + values in the TRANSPORT data block and steps in the REACTION + and KINETICS blocks.

+
+ +
+ +
+ +

Reducing Chemical +Equations to a Standard Form

+ +

The numerical algorithm of PHREEQC requires that chemical +equations be written in a particular form. Internally, every equation must be +written in terms of a minimum set of chemical species; essentially, one species +for each element or valence state of an element. For the program PHREEQE, these +species were called “master species” and the reactions for all aqueous +complexes had to be written using only these species. PHREEQC also needs +reactions in terms of master species; however, the program contains the logic +to rewrite the input equations into this form. Thus, it is possible to enter an +association reaction and log K for an aqueous species in terms of any aqueous +species in the database (not just master species), and PHREEQC will rewrite the +equation to the proper internal form.

+ +

PHREEQC also will rewrite reactions for phases, exchange +complexes, and surface complexes. Reactions are required to be dissolution +reactions for phases and association reactions for aqueous, exchange, or +surface complexes. Dissolution reactions for phases allow inclusion of names of +solids and gases in the equations, provided they are appended with the strings +“(s)” and “(g)”; for example,

+ +

CaCO2[18O](s) + H2O(l) = H2[18O](aq) + +Calcite(s).

+ +

The string “(l)” can be appended to the water formula and “(aq)” +to aqueous species for clarity, but they are not required. The “(s)” and “(g)” +suffixes cause the program to look in the list of phases to find equations that +can be used to reduce the original equation to an equation that contains +exclusively aqueous species. This capability to use solids and gases in +chemical reactions for phases was implemented primarily to simplify the +definition of equations for isotopic solid and gas components. The log Ks for +these isotopic species often depend on the log K for the predominant isotopic +species (solid or gas) offset by a fractionation factor and (or) a +symmetry-derived log K. The inclusion of gases and solids in the equations for +isotopic solids and gases is a straightforward method to define these +dependencies of the isotopic species equilibrium constant on the equilibrium +constant for the predominant isotopic species. In the example given here, the +equilibrium constant for the single oxygen-18 form of calcium carbonate solid +depends on the equilibrium constant of the pure carbon-12, oxygen-16 form of +calcite, which is specified by “Calcite(s)” in the example equation and refers +to the equation and log K defined for the calcite phase.

+ +

There is one major restriction on the rewriting capabilities for +aqueous species. PHREEQC calculates mole balances on individual valence states +or combinations of valence states of an element for initial solution +calculations. It is necessary for PHREEQC to be able to determine the valence +state of an element in a species from the chemical equation that defines the +species. To do this, the program requires that only one aqueous species of an +element valence state is defined by the electron half-reaction that relates it +to another valence state. The aqueous species defined by this half-reaction is +termed a “secondary master species”; there must be a one-to-one correspondence +between valence states and secondary master species and the coefficient of the +newly defined species must be one. In addition, there must be one “primary +master species” for each element, such that reactions for all aqueous species +for an element can be rewritten in terms of the primary master species. The +equation for the primary master species is simply an identity reaction. If the +element is a redox element, the primary master species must also be a secondary +master species. For example, to be able to calculate mole balances on total +iron, total ferric iron, or total ferrous iron, a primary master species must +be defined for Fe (iron) and secondary master species must be defined for +Fe(+3) (ferric iron) and Fe(+2) (ferrous iron). In the default databases, the +primary master species for Fe is Fe +2 , the secondary master +species for Fe(+2) is Fe +2 , and the secondary master species for +Fe(+3) is Fe +3 . The correspondence between master species and +elements and element valence states is defined by the SOLUTION_MASTER_SPECIES +data block, which for iron in phreeqc.dat is as follows:

+ +
SOLUTION_MASTER_SPECIES
Fe           Fe+2  0.0   Fe           55.847
Fe(+2)       Fe+2  0.0   Fe
Fe(+3)       Fe+3  -2.0  Fe
 
+ +

The line with “Fe” (without parentheses) defines the primary +master species, and the last two lines, which have parentheses following “Fe”, +define the secondary master species. The chemical equations for the master +species and all other aqueous species are defined by the SOLUTION_SPECIES +data block.

+ +
+ +
+ +

Conventions for +Documentation

+ +

The descriptions of keywords and their associated input are now +described in alphabetical order as listed in table 1. Several formatting +conventions are used to help the user interpret the input requirements. In this +report, keywords are always capitalized and bold. Words in bold must be +included literally when creating input files (although upper and lower case are +interchangeable and optional spellings may be permitted). “Identifiers” are +additional keywords that apply only within a given keyword data block; they can +be considered to be sub-keywords or options. Although identifiers are case +independent, lowercase bold is used in this report for all identifiers except pH +, -Donnan , -multi_D , and -interlayer_D +, for which mixed case is used. “ temperature ” is an +identifier for SOLUTION input. Each identifier may have two +forms: (1) the identifier word spelled exactly (“ temperature +”, in this case), or (2) a hyphen followed by a sufficient number of characters +to define the identifier uniquely (for example, -t for +temperature in SOLUTION the data block.). The form with the +hyphen is recommended. Words in italics are input values that are +variable and depend on user selection of appropriate values. Items in brackets +([ ]) are optional input fields. Mutually exclusive input fields are enclosed +in parentheses and separated by the word “or”. In general, the optional fields +in a line must be entered in the specified order, but it is sometimes possible +to omit intervening fields. For clarity, commas sometimes are used to delimit +input fields in the explanations of data input; however, commas are not allowed +in the input data file except in Basic programs; in all other cases, only white +space (spaces and tabs) may be used to delimit fields in input files. Where +applicable, default values for input fields are stated.

+ +
+ +
+ +

Getting Started

+ +

When the program PHREEQC is invoked, two files are used to define +the thermodynamic model and the types of calculations that will be done, the +database file and the input file. The database file is read once (to the end of +the file or until an END keyword is encountered) at the +beginning of the program. The input file is then read and processed simulation +by simulation (as defined by END keywords) until the end of +the file. The formats for the keyword data blocks are the same for either the +input file or the database file.

+ +

The database file is used to define static data for the +thermodynamic model. Although any keyword data block can occur in the database +file, normally, the file contains the keyword data blocks: EXCHANGE_MASTER_SPECIES +, EXCHANGE_SPECIES +, PHASES , RATES , SOLUTION_MASTER_SPECIES +, SOLUTION_SPECIES , SURFACE_MASTER_SPECIES , +and SURFACE_SPECIES . These keyword data blocks define rate +expressions, master species, and the stoichiometric and thermodynamic +properties of all of the aqueous phase species, exchange species, surface +species, and pure phases.

+ +

Nine database files are provided with the program: (1) +phreeqc.dat, a database file derived from PHREEQE (Parkhurst and others, 1980), +which is consistent with wateq4f.dat, but has a smaller set of elements and +aqueous species (table 3); (2) +Amm.dat is the same as phreeqc.dat, except that ammonia redox state has been +decoupled from the rest of the nitrogen system; that is, ammonia has been +defined as a separate component; (3) wateq4f.dat, a database file derived from +WATEQ4F (Ball and Nordstrom, 1991); (4) llnl.dat, a database file derived from +databases for EQ3/6 and Geochemist’s Workbench that uses thermodynamic data +compiled by the Lawrence Livermore National Laboratory; (5) minteq.dat, a +database derived from the databases for the program MINTEQA2 (Allison and +others, 1990); (6) minteq.v4.dat, a database derived from MINTEQA2 version 4 +(U.S. Environmental Protection Agency, 1998); (7) pitzer.dat, a database for +the specific-ion-interaction model of Pitzer (Pitzer, 1973) as implemented in +PHRQPITZ (Plummer and others, 1988); (8) sit.dat, a database implementing the +Specific ion Interaction Theory (SIT) as described by Grenthe and others +(1997); and (9) iso.dat, a partial implementation of the individual component +approach to isotope calculations as described by Thorstenson and Parkhurst +(2002, 2004). The elements and element valence states, corresponding notation, +and default formula used to convert mass concentration to mole concentration +units in the database phreeqc.dat are listed in table 3. Other databases may use +different sets of elements, different notation for the element names, or +different default conversion formulas.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Table 3. Elements and element + valence states included in default database phreeqc.dat , including PHREEQC notation and + default formula for gram formula weight.

+

[For alkalinity, formula + for gram equivalent weight is given]

+
+

Element or element valence state

+
+

PHREEQC
+ notation

+
+

Formula used for default gram formula weight

+
+

Alkalinity

+
+

Alkalinity

+
+

Ca 0.5 (CO + 3 ) 0.5

+
+

Aluminum

+
+

Al

+
+

Al

+
+

Barium

+
+

Ba

+
+

Ba

+
+

Boron

+
+

B

+
+

B

+
+

Bromide

+
+

Br

+
+

Br

+
+

Cadmium

+
+

Cd

+
+

Cd

+
+

Calcium

+
+

Ca

+
+

Ca

+
+

Carbon

+
+

C

+
+

HCO 3

+
+

Carbon(IV)

+
+

C(4)

+
+

HCO 3

+
+

Carbon(-IV), methane

+
+

C(-4)

+
+

CH 4

+
+

Chloride

+
+

Cl

+
+

Cl

+
+

Copper

+
+

Cu

+
+

Cu

+
+

Copper(II)

+
+

Cu(2)

+
+

Cu

+
+

Copper(I)

+
+

Cu(1)

+
+

Cu

+
+

Fluoride

+
+

F

+
+

F

+
+

Hydrogen(0), dissolved + hydrogen

+
+

H(0)

+
+

H

+
+

Iron

+
+

Fe

+
+

Fe

+
+

Iron(II)

+
+

Fe(2)

+
+

Fe

+
+

Iron(III)

+
+

Fe(3)

+
+

Fe

+
+

Lead

+
+

Pb

+
+

Pb

+
+

Lithium

+
+

Li

+
+

Li

+
+

Magnesium

+
+

Mg

+
+

Mg

+
+

Manganese

+
+

Mn

+
+

Mn

+
+

Manganese(II)

+
+

Mn(2)

+
+

Mn

+
+

Manganese(III)

+
+

Mn(3)

+
+

Mn

+
+

Nitrogen

+
+

N

+
+

N

+
+

Nitrogen(V), nitrate

+
+

N(5)

+
+

N

+
+

Nitrogen(III), nitrite

+
+

N(3)

+
+

N

+
+

Nitrogen(0), dissolved + nitrogen

+
+

N(0)

+
+

N

+
+

Nitrogen(-III), ammonia

+
+

N(-3)

+
+

N

+
+

Oxygen(0), dissolved oxygen

+
+

O(0)

+
+

O

+
+

Phosphorus

+
+

P

+
+

P

+
+

Potassium

+
+

K

+
+

K

+
+

Silica

+
+

Si

+
+

SiO 2

+
+

Sodium

+
+

Na

+
+

Na

+
+

Strontium

+
+

Sr

+
+

Sr

+
+

Sulfur

+
+

S

+
+

SO 4

+
+

Sulfur(VI), sulfate

+
+

S(6)

+
+

SO 4

+
+

Sulfur(-II), sulfide

+
+

S(-2)

+
+

S

+
+

Zinc

+
+

Zn

+
+

Zn

+
+ +

The input data file is used (1) to define the types of +calculations that are to be done, and (2) if necessary, to modify the data read +from the database file. If new elements and aqueous species, exchange species, +surface species, or phases need to be included in addition to those defined in +the database file, or if the stoichiometry, log K , or activity +coefficient information from the database file needs to be modified for a given +run, then the keywords mentioned in the previous paragraph can be included in +the input file. The data read for these keyword data blocks in the input file +will augment or supersede the data read from the database file. In many cases, +the thermodynamic model defined in the database will not be modified, and the +above keywords will not be used in the input data file.

+ +

The place to start is with the simplest input file, which contains +only a SOLUTION data block containing the dissolved +concentrations of elements. With this input file, PHREEQC will perform a +speciation calculation and calculate saturation indices for the solution. More +complex calculations will calculate new solution compositions as a function of +reactions. Reactions can be understood as occurring in a beaker, where a +solution (as defined by a SOLUTION data block) is placed in +the beaker, and then additional reactants are added. The reactants are defined +with the keywords EQUILIBRIUM_PHASES , EXCHANGE , GAS_PHASE +, KINETICS , REACTION , SOLID_SOLUTIONS +, and SURFACE . One or more of these reactants may be +added to the beaker, and then system equilibrium is calculated, which results +in mole transfers into and out of solution, and new pH and element +concentrations. The pressure and temperature of the reaction may be defined +with REACTION_PRESSURE and REACTION_TEMPERATURE . So, the design of PHREEQC is +fairly intuitive. You must choose the composition of a starting solution and +then decide which types of reactants you need to add to the beaker to model +your system. Transport reactions are simply defined by a series of beakers, +each containing a set of reactants, and water flows and mixes from one beaker +to the next and equilibrates with the reactants in each beaker in sequence.

+ +
+ +
+ +

Units

+ +

The concentrations of elements in solution and the mass of water +in the solution are defined through the SOLUTION or SOLUTION_SPREAD data block. +Internally, all concentrations are converted to molality and the number of +moles of each element in solution (including hydrogen and oxygen) is calculated +from the molalities and the mass of water. Thus, internally, a solution is +simply a list of elements and the number of moles of each element.

+ +

PHREEQC allows each reactant to be defined independently. In +particular, reactants ( EQUILIBRIUM_PHASES , EXCHANGE , +GAS_PHASE , KINETICS , REACTION , +SOLID_SOLUTIONS, and SURFACE +) are defined in terms of moles, without reference to a volume or mass +of water. Systems are defined by combining a solution with a set of reactants +that react either reversibly ( EQUILIBRIUM_PHASES , EXCHANGE +, GAS_PHASE , SOLID_SOLUTIONS, +and SURFACE ) or irreversibly ( KINETICS or REACTION +). Essentially, all of the moles of elements in the solution and the +reversible reactants are combined, the moles of irreversible reactants are +added (or removed), and a new system equilibrium is calculated. Only after +system equilibrium is calculated is the mass of water in the system known, and +only then the molalities of all entities can be calculated.

+ +

For transport calculations, each cell is a system that is defined +by the solution and all the reactants contained in keywords that bear the same +number as the cell number. The system for the cell initially is defined by the +moles of elements that are present in the solution and the moles of each +reactant. The compositions of all these entities evolve as the transport +calculations proceed.

+ +
+ +
+ +

Keywords

+ +

The following sections describe the data input requirements for +the program. Each type of data is input through a specific keyword data block. +Most keywords are listed in alphabetical order within this section of the +report; however, a set of keywords most pertinent to model developers is +described in See Appendix A. Keyword +Data Blocks for Programmers. Each keyword data block may have a number of +identifiers, many of which are optional. Identifiers may be entered in any +order; the line numbers given in examples for the keyword data blocks are for +identification purposes only. Default values for identifiers are used if the +identifier is omitted.

+ +
+ +

ADVECTION

+ +

CALCULATE_VALUES

+ +

COPY

+ +

DATABASE

+ +

DELETE

+ +

DUMP

+ +

END

+ +

EQUILIBRIUM_PHASES +

+ +

EXCHANGE

+ +

EXCHANGE_MASTER_SPECIES +

+ +

EXCHANGE_SPECIES +

+ +

GAS_PHASE

+ +

INCLUDE$

+ +

INCREMENTAL_REACTIONS +

+ +

INVERSE_MODELING +

+ +

ISOTOPES

+ +

ISOTOPE_ALPHAS

+ +

ISOTOPE_RATIOS

+ +

KINETICS

+ +

KNOBS

+ +

LLNL_AQUEOUS_MODEL_PARAMETERS +

+ +

MEAN_GAMMAS

+ +

MIX

+ +

MIX_EQUILIBRIUM_PHASES

+ +

MIX_EXCHANGE

+ +

MIX_GAS_PHASE

+ +

MIX_KINETICS

+ +

MIX_SOLID_SOLUTION

+ +

MIX_SOLUTION

+ +

MIX_SURFACE

+ +

NAMED_EXPRESSIONS +

+ +

PHASES

+ +

PITZER

+ +

PRINT

+ +

RATE_PARAMETERS_HERMANSKA

+ +

RATE_PARAMETERS_PK

+ +

RATE_PARAMETERS_SVD

+ +

RATES

+ +

REACTION

+ +

REACTION_PRESSURE +

+ +

REACTION_TEMPERATURE +

+ +

RUN_CELLS

+ +

SAVE

+ +

SELECTED_OUTPUT

+ +

SIT

+ +

SOLID_SOLUTIONS

+ +

SOLUTION

+ +

SOLUTION_MASTER_SPECIES +

+ +

SOLUTION_SPECIES +

+ +

SOLUTION_SPREAD

+ +

SURFACE

+ +

SURFACE_MASTER_SPECIES +

+ +

SURFACE_SPECIES

+ +

TITLE

+ +

TRANSPORT

+ +

USE

+ +

USER_GRAPH

+ +

USER_PRINT

+ +

USER_PUNCH

+ +
+ +
+ +
+ +

| +Next || Previous || Top |

+ +
+ + + + diff --git a/HTMLversion/HTML/phreeqc3-50.htm b/HTMLversion/HTML/phreeqc3-50.htm index 1d5f49acc..a72688933 100644 --- a/HTMLversion/HTML/phreeqc3-50.htm +++ b/HTMLversion/HTML/phreeqc3-50.htm @@ -24,16 +24,16 @@ David Parkhurst David Parkhurst - 10 - 5700 + 12 + 5733 2024-04-29T22:52:00Z - 2024-05-06T16:10:00Z - 9 - 4212 - 24013 - 200 - 56 - 28169 + 2024-05-08T14:37:00Z + 10 + 4385 + 24997 + 208 + 58 + 29324 16.00 @@ -45,7 +45,7 @@ - SURFACE - - - - - - - - - - - - - -
- -
- -
- -
- -

| Next || Previous -|| Top |

- -

SURFACE

- -

This keyword data block -is used to define the amount and composition of each surface in a surface -assemblage. The composition of a surface assemblage can be defined in two ways: -(1) implicitly, by specifying that the surface assemblage is in equilibrium with -a solution of fixed composition, or (2) explicitly, by defining the amounts of -the surfaces in their neutral form (for example, SurfbOH). -A surface assemblage may have multiple surfaces and each surface may have -multiple binding sites, which are identified by lowercase letters following an -underscore. Three types of surfaces are available: DDL (diffuse-double layer) -surfaces (Dzombak and Morel, 1990), CD-MUSIC (Charge -Distribution MUltiSIte Complexation) surfaces -(Hiemstra and Van Riemsdijk, 1996), and non electrostatic surfaces. For DDL and CD-MUSIC surfaces, -the composition of the diffuse layer that balances the charged surface can be -calculated explicitly (optional). For DDL, the diffuse-layer composition can be -calculated by the method of Borkovec and Westall -(1983) or by the Donnan approach. For CD-MUSIC, the diffuse-layer composition -can be calculated only by the Donnan approach.

- -
- -
Example -data block 1
- -
Line 0:  SURFACE 1 Surface in equilibrium with solution 10
Line 1:      -equilibrate with solution 10
Line 2:      Surfa_w            1.0     1000.     0.33
Line 2a:     Surfa_s            0.01
Line 2b:     Surfb        0.5     1000.     0.33
Line 11:     -ddl
Line 0a:  SURFACE 2 Explicit diffuse layer
Line 1a:     -equilibrate with solution 10
Line 3:      -sites_units       absolute
Line 2c:     Surfa_w            1.0   1000. 0.33         
Line 2d:     Surfa_s            0.01
Line 2e:     Surfb        0.5   1000. 0.33         
Line 4:      -diffuse_layer           2e-8
Line 0b: SURFACE 3 CD_MUSIC surface with Donnan layer
Line 1b:     -equilibrate with solution 10
Line 3a:     -sites_units       density
Line 5:      -cd_music
Line 2f:     Goe_uni            3.45  96.8  16.52
Line 2g:     Goe_tri            2.7
Line 6:      -capacitances            0.98  0.73
Line 7:      -Donnan            1e-8
Line 8:      -only_counter_ions              true
Line 0c: SURFACE 4 Sites related to pure phase and kinetic reactant
Line 1c:     -equilibrate with solution 10
Line 9:      Surfc_wOH   Fe(OH)3(a)  equilibrium_phase 0.1     1e5
Line 9a:     Surfc_sOH   Fe(OH)3(a)  equilibrium_phase 0.001
Line 9b:     Surfd_sOH   Al(OH)3(a)  kinetic_reactant  0.001   2e4
Line 10:     -no_edl 
Line 0d: SURFACE 5 Clay surface with diffusion through Donnan layer
Line 1d:     -equilibrate with solution 5
Line 2h:     Clay_planar        1.59     37.     1.407e4
Line 2i:     Clay_ii            0.01
Line 2j:     Clay_fes           0.85e-3
Line 7a:     -Donnan            9.6e-10 viscosity 1.0
Line 8a:     -only_counter_ions true
Line 0e: SURFACE 6 Clay surface with variable Donnan layer
Line 1e:     -equilibrate with solution 6
Line 2k:     Clay_planar        1.59     37.     1.407e4
Line 7b:     -Donnan            debye_lengths 3.4 limit_ddl 0.9 viscosity 1
Line 0f: SURFACE 7 Colloidal Ferrihydrite particles
Line 1f:     -equilibrate with solution 7
Line 2l:     Hfo_w        2.4e-3   600   1.06   Dw 1e-11
Line 2m:     Hfo_s        6e-5
Line 7c:     -Donnan            1e-12
Line 0f: SURFACE 8 Constant capacitance model
Line 2m:     Ha_aH        3.70E-06 1500  0.010
Line 12:     -ccm         3.196
- -
- -
Explanation -1
- -

Line -0: SURFACE [ number ] [ description ]

- -

SURFACE -is the keyword for the data block.

- -

number ---A positive number designates the surface assemblage and its composition. A -range of numbers may also be given in the form m-n , where m and n -are positive integers, m is less than n , and the two numbers -are separated by a hyphen without intervening spaces. Default is 1.

- -

description ---Optional comment that describes the surface assemblage.

- -

Line -1: -equilibrate number

- -

-equilibrate ---Indicates that the surface assemblage is defined to be in equilibrium with a -given solution composition. Optionally, equil , equilibrate , -e [ -quilibrate ], equilibrium , -or -e [ quilibrium -].

- -

number ---Solution number with which the surface assemblage is to be in equilibrium. -Any alphabetic characters following the identifier and preceding an integer -(“with solution” in Line 1) are ignored.

- -

Line -2: surface binding site, ( sites -or site density ) , specific_area_per_gram, -grams, [ Dw coefficient -]

- -

surface -binding site --Name of a surface binding site.

- -

sites ---Total number of sites for this binding site, in moles; applies when -sites_units is absolute -.

- -

site -density --Site density for this binding site, in -sites per square nanometer; applies when -sites_units -is density .

- -

specific_area_per_gram ---Specific area of surface, in m 2 /g (square meter per gram). -Default is 600 m 2 /g.

- -

grams ---Mass of solid for calculation of surface area, g (gram); surface area is grams -times specific_area_per_gram . Default is 0 g.

- -

Dw -coefficient --Optional diffusion coefficient for the surface, m 2 -/s; applies only when -multi_D is -true in a TRANSPORT calculation. -If coefficient > 0, the surface is transported as a colloid with advective, -dispersive, and diffusive transport. Default is 0 m 2 /s, which -means the surface is immobile.

- -

Line -3: -sites_units ( -absolute or density )

- -

-sites_units --Identifier specifies -the units for the sites definition. Absolute -indicates the number of surface sites is given in moles; density -indicates that the site density is given in sites per square nanometer of -surface area. The choice of units applies to all surfaces in the surface -assemblage. Default is absolute if -sites_units is not included. Optionally, sites_units , site_units , -s -[ ite_units ], or -s -[ ites_units ].

- -

absolute -or density -- Absolute indicates the number -of sites is given in moles; density indicates the site density -is given and the number of sites is calculated from the site density and the -surface area.

- -

Line -4: -diffuse_layer [ thickness ]

- -

-diffuse_layer --Indicates that the -composition of the diffuse layer will be calculated, such that the net surface -charge plus the net charge in the diffuse layer will sum to zero. See Notes -1following this section. Either -diffuse_layer -or -Donnan is necessary to calculate the explicit -diffuse-layer composition that counterbalances the surface charge. The -identifiers -diffuse_layer , -Donnan , and -no_edl are mutually exclusive and apply to all -surfaces in the surface assemblage. The -diffuse_layer -option is not available when using a CD-MUSIC surface ( --cd_music ). -Optionally, diffuse_layer or -d -[ iffuse_layer ].

- -

thickness ---Thickness of the diffuse layer, m (meter). Default -is 10 -8 m (equals 100 angstrom).

- -

Line -5: -cd_music

- -

-cd_music --Indicates that the -surfaces in the surface assemblage are CD-MUSIC surfaces. See Notes 1 for using -diffuse double layer and -no_edl -surfaces in a CD-MUSIC surface assemblage. Optionally, cd_music -or -cd [ _music ].

- -

Line -6: -capacitances c 1 , -c 2

- -

-capacitances ---Identifier specifies the capacitances for the CD-MUSIC surface. Different -surfaces within the surface assemblage may have different capacitances. This -option has effect only when -cd_music -is defined. Defaults are c 1 = 1 and c 2 -= 5 F/m 2 (farad per square meter) if -capacitances -is not included. Optionally, capacitances or -ca -[ pacitances ].

- -

c -1 --Capacitance for the 0-1 plane in the CD-MUSIC formulation, F/m -2 . -

- -

c -2 --Capacitance for the 1-2 plane in the CD-MUSIC formulation, F/m -2 . -

- -

Line -7: -Donnan [( thickness or debye_lengths lengths [ limit_ddl limit ])] [ viscosity -fraction or calc]

- -

-Donnan ---Indicates that the Donnan approach will be used to calculate the composition -of the diffuse layer. The identifiers -diffuse_layer , --Donnan , and -no_edl are -mutually exclusive and apply to all surfaces in the surface assemblage. The -Donnan -option is available when using diffuse-double-layer (default) or CD-MUSIC ( -cd_music -) surfaces. Optionally, Donnan or -Do [ -nnan ] (as with all identifiers, case insensitive).

- -

thickness ---Thickness of the diffuse layer in meters. Default -is 10 -8 m.

- -

debye_lengths -lengths --Either thickness or debye_lengths -may be used to define the thickness of the diffuse layer. If debye_lengths is used, -the Debye length is calculated from the ionic strength of the solution. The -thickness of the diffuse double layer is calculated by the product of lengths -times the Debye length (Appelo and Wersin, 2007).

- -

limit_ddl -limit --If debye_lengths -is specified, then, optionally, the amount of -water contained in the diffuse layer can be limited. Limit is the -fraction of the total water (pore space plus diffuse double layer water) that -can be in the diffuse double layer. Default for limit is 0.8.

- -

viscosity -fraction or calc--When -considering multicomponent diffusion in a TRANSPORT calculation ( -multi_D -true), fraction affects the diffusion of ions in the diffuse layer. Fraction -is the viscosity in the diffuse layer relative to the viscosity in the -free pore space. Default is 1.0. Alternatively, -if the string “calc” (optionally c[alc]) is -specified, the viscosity of the EDL layer will be calculated and used to modify -the diffusion coefficients. To calculate the viscosity effect from an aqueous -species, the exponent for the viscosity effect on diffusion must be different -from 0; the exponent is a_v_dif, which is the 7th -number in the -dw definitions in SOLUTION_SPECIES.

- -

 

- -

Default is 1.0.

- -

Line -8: -only_counter_ions [( True or False )]

- -

-only_counter_ions --Indicates that the -surface charge will be counterbalanced in the diffuse layer with counter-ions -only (the sign of charge of counter-ions is opposite to the surface charge). -This option has effect only when -diffuse_layer -or -Donnan is defined. When -only_counter_ions -is true and -diffuse_layer -is used, charge balance by co-ion exclusion is neglected (co-ions have the same -sign of charge as the surface), meaning that co-ions have the same -concentration in the diffuse layer as in the free pore space. When -only_counter_ions is true -and -Donnan is used, co-ions are completely excluded from the -diffuse layer. See Notes 1 following this section. Default is false if --only_counter_ions is not included. -Optionally, only_counter_ions or -o -[ nly_counter_ions ].

- -

(True -or False) -- True indicates that the surface charge -will be balanced by a surplus of counter-ions in the diffuse layer; false -indicates that surface charge will be balanced by a counter-ion -surplus and a co-ion deficit in the diffuse layer relative to the bulk -solution. Optionally, t [ rue ] or f [ -alse ].

- -

Line -9: surface binding-site formula, name, [( equilibrium_phase -or kinetic_reactant )] -, sites_per_mole, specific_area_per_mole -

- -

surface -binding-site formula --Formula for -surface species including stoichiometry of surface site and other -surface-complexed elements connected with a pure phase or kinetic reactant. The -formula must be charge balanced and is normally the OH-form of the surface -binding site. If no elements other than the surface site are included in the -formula, then the surface site must be uncharged. If elements are included in -the formula and the surface is reacted with a solution, then these elements, in -proportion to the mineral present, will be available to desorb and possibly be -incorporated in other solids in the system. Further, if the mineral or kinetic -reactant is dissolved, these elements will be removed from the solution and -(or) other solids in the system in proportion to the mineral or kinetic -reactant dissolution.

- -

name ---Name of the pure phase or kinetic reactant that has -this kind of surface site. If name is the name of a phase, the moles -of the phase in the EQUILIBRIUM_PHASES -data block with the same number as this surface number (4 for Lines 9 and 9a) -will be used to determine the number of moles of surface sites (moles of phase -times sites_per_mole equals moles of surface -sites). If name is the rate name for a kinetic reactant, then the -moles of the reactant in the KINETICS -data block with the same number as this surface number (4 for line 9b) will be -used to determine the number of surface sites (moles of kinetic reactant times sites_per_mole equals moles of surface sites). -Note that the stoichiometry of the phase or reactant must contain sufficient amounts of the elements in the surface complexes -defined in Line 3. In the Example data block 1, there must be at least 0.101 -mol of oxygen and hydrogen per mole of Fe(OH)3(a).

- -

equilibrium_phase -or kinetic_reactant ---If equilibrium_phase is used, the name -on the line is a phase defined in an EQUILIBRIUM_PHASES -data block. If kinetic_reactant is -used, the name on the line is the rate name for a kinetic reactant defined in a -KINETICS data block. Default is equilibrium_phase . Optionally, e or k -; only the first letter is checked.

- -

sites_per_mole ---Moles of surface sites per mole of phase or kinetic reactant, unitless -(mol/mol).

- -

specific_area_per_mole ---Specific area of surface, in m 2 /mol (square meter per mole) of -equilibrium phase or kinetic reactant. Default is 0 m 2 /mol.

- -

Line -10: -no_edl

- -

-no_edl --Indicates that no -electrostatic terms will be used in the mass-action equations for surface -species and no explicit calculation of the diffuse-layer composition is -performed. The identifiers -no_edl , -diffuse_layer -, and -Donnan are mutually exclusive and apply to all surfaces -in the surface assemblage. Optionally, no_edl , -n -[ o_edl ], no_electrostatic -, -n [ o_electrostatic -].

- -

Line 11: -ddl -

- -

-ddl--Indicates that the diffuse -double layer model will be used for all surfaces defined in this SURFACE data -block. The diffuse double layer model is the default and will be used if -neither -cd_music nor -no_edl -is defined. Optionally, ddl, -dd[l]. -

- -

Line 12: -ccm c -

- -

-ccm--Indicates that the surfaces in -the surface assemblage use the constant-capacitance model. See Notes 1 for -using diffuse double layer and -no_edl surfaces with -constant capacitance surfaces. Different capacitances can be defined for -different surfaces by using multiple line 11. Optionally, ccm, --cc[m], constant_capacitance, or -co[nstant_capacitance].

- -

c--Capacitance in F/m2 (farad per square meter).

- -
- -
- -
Notes 1
- -

The databases included -with PHREEQC contain thermodynamic data for a diffuse-double-layer surface -named “Hfo” (Hydrous ferric oxide) that are derived -from Dzombak and Morel (1990). Two sites are defined -for this surface: a strong binding site, Hfo_s, and a -weak binding site, Hfo_w. Note that Dzombak and Morel (1990) used 0.2 mol weak sites and 0.005 -mol strong sites per mol Fe, a surface area of 5.33 × 10 4 -m 2 /mol Fe, and a gram-formula weight of 89 g Hfo/mol -Fe; to be consistent with their model, the relative number of strong and weak -sites should remain constant as the total number of sites varies. To facilitate -consistency, the identifier -sites_units density can be used, -which calculates the number of sites from the site density (sites per square -nanometer), the specific surface area (square meter per gram), and the mass -(grams).

- -

A surface assemblage -can have multiple surfaces, each of which can have multiple site types. SURFACE -1 in Example data block 1 has two surfaces, Surfa and -Surfb. Surfa has two -binding sites, Surfa_w and Surfa_s; -they share the same surface area and have the same electrostatic potential. The -link between the two is indicated by the shared surface name, which is followed -by an underscore, “_”, and other letter(s) to -distinguish the two types of sites. The surface area and mass for Surfa must be defined in the input data for at least one of -the two binding sites. Surfb has only one kind of -binding site and the area and mass must be defined as part of the input for the -single binding site. SURFACE 2 is the same as SURFACE -1 except that an explicit calculation of the composition of the diffuse layer -is specified. The identifier -sites_units -absolute is equivalent to the default that is used in SURFACE -1.

- -

SURFACE -3 defines a CD-MUSIC surface. The data are based on a description of binding on -goethite (Hiemstra and Van Riemsdijk, 1996; Rahnemaie and others, 2006) that has two site types (Goe_uni and Goe_tri). The -identifiers -ddl, --equilibrate , --diffuse_layer , -sites_units , -cd_music -, -Donnan , -only_counter_ions -, and -no_edl apply to all surfaces -and site types in the surface assemblage. The identifier -capacitances -is defined for each individual CD-MUSIC surface and does not apply to the -entire surface assemblage. A combination of CD-MUSIC, diffuse double layer, and --no_edl surfaces cannot be used -directly in a SURFACE assemblage. However, a -diffuse-double-layer surface, like Surfa in SURFACE -1, will keep its properties in a CD-MUSIC surface assemblage when defined with -very high capacitances; for example, -capacitances 1e5 1e5. Similarly, a -no_edl -surface will keep its properties in a diffuse-double-layer surface if -the surface area is very large (1 × 10 10 m 2 -[square meter] for the product of specific_area_per_gram -and grams ). By extension, a -no_edl surface will keep its properties when -defined in a CD_MUSIC surface assemblage if the surface area and capacitances -are large. Thus, with these special definitions, -cd_music -can be used to model simultaneously all of the available types of surfaces ( -no_edl -, diffuse double layer, and CD-MUSIC). If a -no_edl -surface with a large surface area is included in an assemblage together with -identifier -Donnan , -the thickness may have to be set to a small number to avoid the -situation where the volume of EDL water becomes unrealistically large.

- -

SURFACE -4 has one surface, Surfc, which has two binding -sites, Surfc_w and Surfc_s. -The number of binding sites for these two kinds of sites is determined by the -amount of Fe(OH)3(a) in EQUILIBRIUM_PHASES 4, where 4 is the -same number as the surface number. If m represents the moles of Fe(OH)3(a) in EQUILIBRIUM_PHASES -4, then the number of sites of Surfc_w is 0.1 m ( -mol) and of Surfc_s is 0.001 m (mol). The -surface area for Surfc is defined relative to the -moles of Fe(OH)3(a), such that the surface area is -100,000 m (m 2 ). During batch-reaction simulations the -moles of Fe(OH)3(a) in EQUILIBRIUM_PHASES 4 may change, in -which case the number of sites of Surfc will change -as will the surface area associated with Surfc. -Whenever Fe(OH)3(a) precipitates, the specified -amounts of Surfc_wOH and Surfc_sOH -are formed and all the species that are surface-complexed and in the electrical -double layer will be taken from the elements in the system. These formulas are -charge balanced and the OH groups are part of the formula for Fe(OH)3(a). The OH is not used in the initial -surface-composition calculation, but is critical when amounts of Fe(OH)3(a) vary. Erroneous results will occur if the formula -is not charge balanced, and a warning message will be printed if the elements -in the surface complex (other than the surface site itself) are not contained -in sufficient quantities in the equilibrium phase or kinetic formula.

- -

The number of sites of Surfd in SURFACE 4 is determined by the -amount of a kinetic reactant defined in KINETICS -4, where 4 is the same number as the surface number. Sites related to a kinetic -reactant are exactly analogous to sites related to an equilibrium phase. The -same restrictions apply--the formula must be charge balanced, and the elements -in the surface complex (other than the surface site itself) should be included -in the formula of the reactant.

- -

SURFACE -5 is a template for modeling sorption and diffusion in clay rocks; in this -case, the Opalinus Clay at Mont Terri in Switzerland -(Appelo and others, 2010). A rock dry density of 2.7 kg/L, an overall porosity -of 0.161, of which half is accessible for Cl-, a specific surface area of 37 -m2/g, and an exchange capacity of 0.114 eq/kg (equivalent per kilogram) are -translated to a surface that is defined relative to 1 L of pore water. Thus, 1 -L of pore water is in contact with 2.7 × (1 - 0.161) / 0.161 = 14.07 -kg rock. The surface has “clay_planar” sites that -express the bulk exchange capacity of the rock (1.59 mol sites). The measured -sorption isotherm for Cs+ indicates the presence of two sites: “clay_ii” sites with an intermediate strength for binding -Cs+, and “clay_fes” sites on the frayed edges of illite with a very strong and very specific binding -strength. The number of these sites and the complexation constants for Cs+ and -other cations are obtained by fitting the isotherm, while accounting for two -sorption types: one type is for surface complexation, which is specific for the -various ions; the other type is connected with charge compensation in the -Donnan space, which is in principle, the same for all equal-charged ions -(although it can be varied with -erm_DDL -in keyword SOLUTION_SPECIES to -match observed differences). In SURFACE 5, the exclusion of -Cl- is modeled with a Donnan pore space that contains only counter-ions (is Cl- -free). Thus, it holds 0.5 L water and has a thickness (derived from this volume -and the total area) of 0.5 × 10 -3 / (37 × 14.07 10 3 ) -= 9.6 × 10 -10 m. This thickness equals 1.9 Debye lengths -at the ionic strength of the pore water of 0.368, which is in good agreement -with anion-exclusion theory (Schofield, 1947; Tournassat -and Appelo, 2011).

- -

An anion-free Donnan -pore space is the simplest option and is in line with traditional calculations -in soil science. Perhaps more realistically, the anion exclusion can be modeled -with -only_counter_ions false and an -increased thickness of the Donnan layer. The fraction of free (uncharged) pore -water, ffree, follows from the Cl- accessible pore -space and the potential in the Donnan space, ψD -(V):

- -
- -
- -

, (6)

- -

where -ε a is the accessible porosity (unitless), ε tot -is the total porosity (unitless), F is the Faraday constant (96485 JV-1eq-1), R -is the gas constant (8.314 JK-1mol-1), and T is the temperature (K). The -potential in the Donnan space depends on the water composition and the surface -charge, while the latter is also a function of the surface complexation -constants: higher constants increase complexation and, usually, decrease the -surface charge, provided the complexes are uncharged (charged complexes could -increase the surface charge). By fixing the complexation constant for Na+ to --0.7, and the constants for the other major cations by matching the measured -distribution coefficients in Opalinus Clay, the -surface charge--that is, the part of the exchange capacity that is compensated -in the Donnan pore space--can be calculated to be 45 percent (Appelo and -others, 2010). This results in ffree = 0.117 and -thus, 0.883 × 10 -3 m 3 (cubic meter) water in -the Donnan pore space per m 3 pore water. Accordingly, the thickness -of the Donnan space becomes
-0.883 × 10 -3 / (37 × 14.07 × 10 3 ) = 1.7 10 -9 m, or 3.4 Debye lengths.

- -

SURFACE -6 illustrates the option to set the thickness of the Donnan layer to be a -number of Debye lengths, κ1 , given by (m), where å r is the relative dielectric -constant of water, T is the temperature (kelvin), and I is the ionic strength. -Thus, for SURFACE 5, with -only_counter_ions -true, the thickness can be defined to be -Donnan debye_lengths -1.9, while with -only_counter_ions false -(the default option) the thickness is defined to be -Donnan debye_lengths 3.4 as in SURFACE -6. The thickness will now vary with the ionic strength of the solution, and the -fraction of free pore water will be adjusted to maintain the same total amount -of water. For program convergence, the fraction of Donnan water is limited with -limit_ddl 0.9 in SURFACE -6 (default is limit_ddl 0.8).

- -

The chemical and -physical properties of clay rocks can be measured precisely with diffusion -experiments, and PHREEQC can model the experiments by calculating -multicomponent diffusion with option -multi_D -in keyword TRANSPORT. With this -option, diffusion is calculated separately for the free (uncharged) pore water -and the Donnan pore water, while each solute species has its own diffusion -coefficient. It is probable that the electrostatic double layer, mimicked by -the Donnan pore space in PHREEQC, has properties that are different from free -pore water. The dielectric permittivity is lower in an electrostatic field, -which will enhance the complexation of charged ions into neutral species. Such -complexation will diminish anion exclusion, and will be different for different -anions, depending on charge and hydration radius. This effect can be modeled by -defining an enrichment factor in the Donnan pore space with -erm_ddl in keyword SOLUTION_SPECIES. Furthermore, the -viscosity may be higher in the Donnan pore water than in ordinary water, and -diffusion would be lower in proportion with the viscosity ratio. PHREEQC allows -setting the viscosity ratio as illustrated in SURFACE 5 and SURFACE -6. (Default is 1.0)

- -

SURFACE -7 defines a diffusion coefficient of 10-11 m2/s for a surface consisting of -ferrihydrite particles (Hfo in the database). When -the diffusion coefficient is larger than 0, the surface will advect and disperse like a normal solute species in a -column defined with keyword TRANSPORT -and -multi_D true, and it will -diffuse in accordance with the diffusion coefficient. The surface must be -neutral, either charge-free by itself, or by adding a Donnan layer that -neutralizes the surface charge. In SURFACE 7, the Donnan layer -is given a small thickness of only 1 picometer to avoid significant variation -in water contents in the cells during transport. The transported surfaces will -carry the elements in the surface complexed species, as well as the solutes in -the Donnan layer. The diffusion coefficient of the surface, either the whole, -or part of it, can be modified with the special Basic function CHANGE_SURF. If -changed to 0 m2/s, the surface becomes immobile. Thus, SURFACE -7 is a colloidal particle that can transport heavy metals complexed on its -surface while the diffusion coefficient is greater than zero, and it can -coagulate with other particles and be deposited depending on chemical or -physical conditions in the column by setting the diffusion coefficient to zero -with CHANGE_SURF. An example is given at -http://www.hydrochemistry.eu/exmpls/colloid.html (accessed June 25, 2012).

- -

Line 1 requires the -program to make a calculation to determine the composition of a surface -assemblage, termed an “initial surface calculation”. Before any batch-reaction -or transport calculations, initial surface calculations are performed to -determine the composition of the surface assemblages that would exist in -equilibrium with the specified solution (solution 10 for SURFACE -1 in this Example data block). The composition of the solution will not change -during these calculations. In contrast, during a batch-reaction calculation, -when a surface assemblage (defined as in Example data block 1 or Example data -block 2 of this section) is reacted with a solution with which it is not in -equilibrium, both the surface composition and the solution composition will be -adjusted to a new equilibrium.

- -

When -diffuse_layer or -Donnan is not -used (default), any charge that develops on the surface during a reaction step -will be accompanied by an equal, but opposite, charge imbalance for the -solution. Thus, charge imbalances accumulate in the solution and on the surface -when surfaces and solutions are separated. This handling of charge imbalances -for surfaces is physically incorrect. Consider the following example, where a -charge-balanced surface is brought together with a charge-balanced solution. -Assume a positive charge develops at the surface. Now remove the surface from -the solution. With the default formulation, a positive charge imbalance is -associated with the surface, Z s , -and a negative charge imbalance, Z soln -, is associated with the solution. In reality, the -charged surface plus the diffuse layer surrounding it is electrically neutral -and the combination should be removed. This would leave an electrically neutral -solution as well. The default formulation is workable; its main defect is that -the counter-ions that should be in the diffuse layer are retained in the -solution. The model results are adequate, provided solutions and surfaces are -not separated or the exact concentrations of aqueous counter-ions are not -critical to the investigation.

- -

The -diffuse_layer and -Donnan -identifiers activate models to balance the accumulation of surface charge with -an explicit calculation of the diffuse-layer composition. When these -identifiers are used, the composition of the diffuse layer is calculated and an -additional printout of the elemental composition of the diffuse layer is -produced. The -diffuse_layer identifier -calculates the moles of each aqueous species in the diffuse layer according to -the method of Borkovec and Westall (1983) and the -assumption that the diffuse layer is a constant thickness (optionally input -with -diffuse_layer , default is 10 -8 m). The variation of -thickness of the diffuse layer with ionic strength is ignored. The net charge -in the diffuse layer exactly balances the net surface charge. The -diffuse_layer calculation requires an integration -that is slow and liable to failure under certain conditions. The -Donnan -calculation is much faster and more robust, and gives results that are -usually similar to the -diffuse_layer -calculation.

- -

In the -Donnan -calculation, the concentrations in the diffuse layer are averaged and computed -with:

- -
- -
- -

, (7)

- -

where -cDonnan, i is the -concentration of species i in the Donnan pore space -(mol/L), ci is the concentration in the free (uncharged) solution, erm_DDLi is an enrichment factor (unitless) that can be -defined in keyword SOLUTION_SPECIES, -and zi is the charge number (unitless). The potential ψD -is adjusted to let the charge of the Donnan volume counterbalance the surface -charge:

- -
- -
- -

, (8)

- -

where -σsurface is the surface charge (eq/L).

- -

Conceptually, the -results of using the explicit diffuse-layer calculations are correct--charge -imbalances on the surface are balanced in the diffuse layer and the solution -remains charge balanced. Great uncertainties exist in the true composition of -the diffuse layer and the thickness of the diffuse layer. The ion complexation -in the bulk solution is assumed to apply in the diffuse layer, which is -unlikely because of changes in the dielectric constant of water near the -charged surface. Identifier -erm_ddl -in keyword SOLUTION_SPECIES can -correct for such effects if needed, but it is a primitive and arbitrary -correction. The explicit diffuse layer calculation is based on assumptions that -allow the volume of water in the diffuse layer to remain small relative to the -solution volume. It is possible, especially for solutions of low ionic -strength, for the calculated concentration of an element to be negative in the -integrated diffuse layer (calculated with identifier -diffuse_layer ). In this case, the assumed thickness of the diffuse layer -is too small (or perhaps the entire diffuse-layer approach is inappropriate) -and the program stops with an error message. The identifier -only_counter_ions offers -an option to let only the counter-ions increase in concentration in the diffuse -layer, and to leave the co-ions at the same concentration in the diffuse layer -as in the bulk solution. The counter-ions have a higher concentration in the -diffuse layer than without this option, because co-ion exclusion is neglected. -Alternatively, when using -only_counter_ions -and -Donnan , -the co-ion concentration is zero in the Donnan pore space. In this case, the -counter-ions will have a smaller concentration in the Donnan layer with -only_counter_ions true, than with -only_counter_ions false.

- -

A third alternative for -modeling surface-complexation reactions, in addition to the default, -diffuse_layer , and -cd_music -, is to ignore the surface potential entirely. The -no_edl -identifier eliminates the potential term from mass-action expressions for -surface species, eliminates any charge-balance equations for surfaces, and -eliminates any charge-potential relationships. The charge on the surface is -calculated and saved with the surface composition, and an equal and opposite -charge is stored with the aqueous phase. All of the cautions about separation -of charge, mentioned in the previous paragraphs, apply to the calculation using --no_edl . No explicit calculation of the diffuse-layer composition -is available when using -no_edl .

- -

For transport -calculations, it is much faster in terms of CPU time to use either the default -(no explicit diffuse layer calculation) or -no_edl . However, -Donnan -and -diffuse_layer can be used to -test the sensitivity of the results to diffuse-layer effects.

- -

After a set of -batch-reaction calculations has been simulated, it is possible to save the -resulting surface composition with the SAVE -keyword. If the new composition is not saved, the surface composition will -remain the same as it was before the batch-reaction calculations. After it has -been defined or saved, the surface composition may be used in subsequent -simulations through the USE -keyword. By using the RUN_CELLS -data block, the results of the batch-reaction calculations, including the -surface-assemblage composition, are automatically saved. In ADVECTION and -TRANSPORT simulations, the surface -assemblages in the column are automatically saved after each shift.

- -
- -
Example -data block 2
- -
Line 0d:  SURFACE 1 Neutral surface composition
Line 1:      Surf_wOH           0.3          660.               0.25
Line 1a:     Surf_sOH           0.003
Line 2:      Surfc_sOH          Fe(OH)3(a)         equilibrium_phase               0.001
Line 2b:     Surfd_sOH          Al(OH)3(a)         kinetic_reactant                0.001
- -
- -
Explanation -2
- -

Line -0d: SURFACE [ number ] [ description ]

- -

Same as Example data -block 1.

- -

Line -1: surface binding-site formula, ( sites -or site density ) , specific_area_per_gram, -grams, [ Dw coefficient -]

- -

surface -binding-site formula --Formula for -a surface that is charge balanced.

- -

sites ---Total number of sites for this binding site, in moles; applies when -sites_units is absolute -.

- -

site -density --Site density for this binding site, in -sites per square nanometer; applies when -sites_units -is density .

- -

specific_area_per_gram ---Specific area of surface, in m 2 /g (square meter per gram). -Default is 600 m 2 /g.

- -

grams ---Mass of solid for calculation of surface area, g (gram); surface area is grams -times specific_area_per_gram . Default is 0 g.

- -

Dw -coefficient --Optional diffusion coefficient for the surface, m 2 -/s; applies only when -multi_D is -true in a TRANSPORT calculation. -If coefficient > 0, the surface is transported as a colloid with advective, -dispersive, and diffusive transport. Default is 0 m 2 /s, which -means the surface is immobile.

- -

Line -2: surface binding-site formula, name, [( equilibrium_phase -or kinetic_reactant )] -, sites_per_mole, specific_area_per_mole -

- -

Same -as Line 9 in Example data block 1.

- -
- -
- -
Notes 2
- -

The difference between -Example data block 2 and Example data block 1 is that no initial -surface-composition calculation is performed in Example data block 2. The -composition of the surface assemblage must be given precisely (from chemical -analysis) and charge-balanced to avoid spurious pH and redox reactions. -Additional surfaces and binding sites can be defined by repeating Lines 2 and 9 -from Example data block 1. All other identifiers listed for Example data block -1 also can be included.

- -
- -
- -
Example -problems
- -

The keyword SURFACE -is used in example problems 8, 14, 19, and 21.

- -
- -
- -
Related -keywords
- -

ADVECTION, COPY, DELETE, DUMP, RUN_CELLS, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, SAVE surface , TRANSPORT -, and USE surface -.

- -
- -
- -
- -
- -
- -

| Next || Previous -|| Top |

- -
- - - - + + + + + + + SURFACE

| Next || Previous || Top |

+ +

+ +SURFACE +

+

+This keyword data block is used to define the amount and composition of each surface in a surface assemblage. The composition of a surface assemblage can be defined in two ways: (1) implicitly, by specifying that the surface assemblage is in equilibrium with a solution of fixed composition, or (2) explicitly, by defining the amounts of the surfaces in their neutral form (for example, SurfbOH). A surface assemblage may have multiple surfaces and each surface may have multiple binding sites, which are identified by lowercase letters following an underscore. Three types of surfaces are available: DDL (diffuse-double layer) surfaces (Dzombak and Morel, 1990), CD-MUSIC (Charge Distribution MUltiSIte Complexation) surfaces (Hiemstra and Van Riemsdijk, 1996), and non electrostatic surfaces. For DDL and CD-MUSIC surfaces, the composition of the diffuse layer that balances the charged surface can be calculated explicitly (optional). For DDL, the diffuse-layer composition can be calculated by the method of Borkovec and Westall (1983) or by the Donnan approach. For CD-MUSIC, the diffuse-layer composition can be calculated only by the Donnan approach.

+
+
+Example data block 1
+
Line 0:  SURFACE 1 Surface in equilibrium with solution 10
+
Line 1:	-equilibrate with solution 10
+
Line 2:	Surfa_w		1.0     1000.     0.33
+
Line 2a:	Surfa_s		0.01
+
Line 2b:	Surfb		0.5     1000.     0.33
+
Line 11:	-ddl
+
+
Line 0a:  SURFACE 2 Explicit diffuse layer
+
Line 1a:	-equilibrate with solution 10
+
Line 3:	-sites_units		absolute
+
Line 2c:	Surfa_w		1.0	1000.	0.33		
+
Line 2d:	Surfa_s		0.01
+
Line 2e:	Surfb		0.5	1000.	0.33		
+
Line 4:	-diffuse_layer		2e-8
+
Line 0b: SURFACE 3 CD_MUSIC surface with Donnan layer
+
Line 1b:	-equilibrate with solution 10
+
Line 3a:	-sites_units		density
+
Line 5:	-cd_music
+
Line 2f:	Goe_uni		3.45	96.8	16.52
+
Line 2g:	Goe_tri		2.7
+
Line 6:	-capacitances		0.98	0.73
+
Line 7:	-Donnan		1e-8
+
Line 8:	-only_counter_ions			true
+
Line 0c: SURFACE 4 Sites related to pure phase and kinetic reactant
+
Line 1c:	-equilibrate with solution 10
+
Line 9:	Surfc_wOH   Fe(OH)3(a)  equilibrium_phase 0.1     1e5
+
Line 9a:	Surfc_sOH   Fe(OH)3(a)  equilibrium_phase 0.001
+
Line 9b:	Surfd_sOH   Al(OH)3(a)  kinetic_reactant  0.001   2e4
+
Line 10:	-no_edl 
+
Line 0d: SURFACE 5 Clay surface with diffusion through Donnan layer
+
Line 1d:	-equilibrate with solution 5
+
Line 2h:	Clay_planar		1.59     37.     1.407e4
+
Line 2i:	Clay_ii		0.01
+
Line 2j:	Clay_fes		0.85e-3
+
Line 7a:	-Donnan		9.6e-10 viscosity 1.0
+
Line 8a:	-only_counter_ions true
+
Line 0e: SURFACE 6 Clay surface with variable Donnan layer
+
Line 1e:	-equilibrate with solution 6
+
Line 2k:	Clay_planar		1.59     37.     1.407e4
+
Line 7b:	-Donnan		debye_lengths 3.4 limit_ddl 0.9 viscosity 1
+
Line 0f: SURFACE 7 Colloidal Ferrihydrite particles
+
Line 1f:	-equilibrate with solution 7
+
Line 2l:	Hfo_w		2.4e-3   600   1.06   Dw 1e-11
+
Line 2m:	Hfo_s		6e-5
+
Line 7c:	-Donnan		1e-12
+
Line 0f: SURFACE 8 Constant capacitance model
+
+
Line 2m:	Ha_aH		3.70E-06 1500  0.010
+
+
Line 12:	-ccm		3.196
+
+
+
+
+Explanation 1
+

+Line 0: +SURFACE + [ +number +] [ +description +]

+

+ +SURFACE + is the keyword for the data block.

+

+ +number +--A positive number designates the surface assemblage and its composition. A range of numbers may also be given in the form +m-n +, where +m + and +n + are positive integers, +m + is less than +n +, and the two numbers are separated by a hyphen without intervening spaces. Default is 1.

+

+ +description +--Optional comment that describes the surface assemblage.

+

+Line 1: +-equilibrate + + number +

+

+ +-equilibrate +--Indicates that the surface assemblage is defined to be in equilibrium with a given solution composition. Optionally, +equil +, + equilibrate +, +-e +[ +quilibrate +], +equilibrium +, or +-e +[ +quilibrium +].

+

+ +number +--Solution number with which the surface assemblage is to be in equilibrium. Any alphabetic characters following the identifier and preceding an integer (“with solution” in Line 1) are ignored.

+

+Line 2: +surface binding site, +( +sites +or + site density +) +, specific_area_per_gram, grams, +[ +Dw + + coefficient +]

+

+ +surface binding site +--Name of a surface binding site.

+

+ +sites +--Total number of sites for this binding site, in moles; applies when +-sites_units + is +absolute +.

+

+ +site density +--Site density for this binding site, in sites per square nanometer; applies when +-sites_units + is +density +.

+

+ +specific_area_per_gram +--Specific area of surface, in m +2 +/g (square meter per gram). Default is 600 m +2 +/g.

+

+ +grams +--Mass of solid for calculation of surface area, g (gram); surface area is +grams +times + specific_area_per_gram +. Default is 0 g.

+

+ +Dw + + coefficient +--Optional diffusion coefficient for the surface, m +2 +/s; applies only when +-multi_D +is true in a TRANSPORT calculation. If coefficient > 0, the surface is transported as a colloid with advective, dispersive, and diffusive transport. Default is 0 m +2 +/s, which means the surface is immobile.

+

+Line 3: +-sites_units +( +absolute + or +density +)

+

+ +-sites_units +--Identifier specifies the units for the sites definition. +Absolute + indicates the number of surface sites is given in moles; +density + indicates that the site density is given in sites per square nanometer of surface area. The choice of units applies to all surfaces in the surface assemblage. Default is +absolute +if +-sites_units + is not included. Optionally, +sites_units +, +site_units +, +-s +[ +ite_units +], or +-s +[ +ites_units +].

+

+ +absolute + or +density +-- +Absolute + indicates the number of sites is given in moles; +density + indicates the site density is given and the number of sites is calculated from the site density and the surface area.

+

+Line 4: +-diffuse_layer +[ +thickness +]

+

+ +-diffuse_layer +--Indicates that the composition of the diffuse layer will be calculated, such that the net surface charge plus the net charge in the diffuse layer will sum to zero. See Notes 1following this section. Either +-diffuse_layer + or +-Donnan + is necessary to calculate the explicit diffuse-layer composition that counterbalances the surface charge. The identifiers +-diffuse_layer +, + -Donnan +, and +-no_edl + are mutually exclusive and apply to all surfaces in the surface assemblage. The +-diffuse_layer + option is not available when using a CD-MUSIC surface ( +-cd_music +). Optionally, +diffuse_layer + or +-d +[ +iffuse_layer +].

+

+ +thickness +--Thickness of the diffuse layer, m (meter). Default is 10 +-8 + m (equals 100 angstrom).

+

+Line 5: +-cd_music +

+

+ +-cd_music +--Indicates that the surfaces in the surface assemblage are CD-MUSIC surfaces. See Notes 1 for using diffuse double layer and +-no_edl + surfaces in a CD-MUSIC surface assemblage. Optionally, +cd_music + or +-cd +[ +_music +].

+

+Line 6: +-capacitances + +c + +1 +, +c + +2 +

+

+ +-capacitances +--Identifier specifies the capacitances for the CD-MUSIC surface. Different surfaces within the surface assemblage may have different capacitances. This option has effect only when +-cd_music + is defined. Defaults are +c + +1 + = 1 and +c + +2 + = 5 F/m +2 +(farad per square meter) if +-capacitances + is not included. Optionally, +capacitances + or +-ca +[ +pacitances +].

+

+ +c + +1 +--Capacitance for the 0-1 plane in the CD-MUSIC formulation, F/m +2 +.

+

+ +c + +2 +--Capacitance for the 1-2 plane in the CD-MUSIC formulation, F/m +2 +.

+

+Line 7: +-Donnan +[( +thickness + or +debye_lengths + + lengths +[ +limit_ddl + + limit +])] [ +viscosity + +fraction +]

+

+ +-Donnan +--Indicates that the Donnan approach will be used to calculate the composition of the diffuse layer. The identifiers +-diffuse_layer +, + -Donnan +, and +-no_edl + are mutually exclusive and apply to all surfaces in the surface assemblage. The +-Donnan + option is available when using diffuse-double-layer (default) or CD-MUSIC ( +-cd_music +) surfaces. Optionally, +Donnan + or +-Do +[ +nnan +] (as with all identifiers, case insensitive).

+

+ +thickness +--Thickness of the diffuse layer in meters. Default is 10 +-8 + m.

+

+ +debye_lengths + + lengths +--Either +thickness + or + + +debye_lengths + + +may be used to define the thickness of the diffuse layer. If + debye_lengths +is used, the Debye length is calculated from the ionic strength of the solution. The thickness of the diffuse double layer is calculated by the product of +lengths + times the Debye length (Appelo and Wersin, 2007).

+

+ +limit_ddl + + limit +--If +debye_lengths +is specified, then, optionally, the amount of water contained in the diffuse layer can be limited. +Limit + is the fraction of the total water (pore space plus diffuse double layer water) that can be in the diffuse double layer. Default for +limit + is 0.8.

+

+ +viscosity + +fraction +--When considering multicomponent diffusion in a TRANSPORT calculation ( +-multi_D + true), +fraction + affects the diffusion of ions in the diffuse layer. +Fraction +is the viscosity in the diffuse layer relative to the viscosity in the free pore space. Default is 1.0.

+

+Line 8: +-only_counter_ions +[( +True + or +False +)]

+

+ +-only_counter_ions +--Indicates that the surface charge will be counterbalanced in the diffuse layer with counter-ions only (the sign of charge of counter-ions is opposite to the surface charge). This option has effect only when +-diffuse_layer + or +-Donnan + is defined. When +-only_counter_ions + is true and +-diffuse_layer + is used, charge balance by co-ion exclusion is neglected (co-ions have the same sign of charge as the surface), meaning that co-ions have the same concentration in the diffuse layer as in the free pore space. When +-only_counter_ions + is true and +-Donnan + is used, co-ions are completely excluded from the diffuse layer. See Notes 1 following this section. Default is +false +if +-only_counter_ions +is not included. Optionally, +only_counter_ions + or +-o +[ +nly_counter_ions +].

+

+ +(True + or +False) +-- +True +indicates that the surface charge will be balanced by a surplus of counter-ions in the diffuse layer; +false +indicates that surface charge will be balanced by a counter-ion surplus and a co-ion deficit in the diffuse layer relative to the bulk solution. Optionally, +t +[ +rue +] or +f +[ +alse +].

+

+Line 9: +surface binding-site formula, name, +[( +equilibrium_phase +or + kinetic_reactant +)] +, sites_per_mole, specific_area_per_mole +

+

+ +surface binding-site formula +--Formula for surface species including stoichiometry of surface site and other surface-complexed elements connected with a pure phase or kinetic reactant. The formula must be charge balanced and is normally the OH-form of the surface binding site. If no elements other than the surface site are included in the formula, then the surface site must be uncharged. If elements are included in the formula and the surface is reacted with a solution, then these elements, in proportion to the mineral present, will be available to desorb and possibly be incorporated in other solids in the system. Further, if the mineral or kinetic reactant is dissolved, these elements will be removed from the solution and (or) other solids in the system in proportion to the mineral or kinetic reactant dissolution.

+

+ +name +--Name of the pure phase or kinetic reactant that has this kind of surface site. If +name + is the name of a phase, the moles of the phase in the EQUILIBRIUM_PHASES data block with the same number as this surface number (4 for Lines 9 and 9a) will be used to determine the number of moles of surface sites (moles of phase times +sites_per_mole + equals moles of surface sites). If +name + is the rate name for a kinetic reactant, then the moles of the reactant in the KINETICS data block with the same number as this surface number (4 for line 9b) will be used to determine the number of surface sites (moles of kinetic reactant times +sites_per_mole + equals moles of surface sites). Note that the stoichiometry of the phase or reactant must contain sufficient amounts of the elements in the surface complexes defined in Line 3. In the Example data block 1, there must be at least 0.101 mol of oxygen and hydrogen per mole of Fe(OH)3(a).

+

+ +equilibrium_phase +or + kinetic_reactant +--If +equilibrium_phase + is used, the +name + on the line is a phase defined in an EQUILIBRIUM_PHASES data block. If +kinetic_reactant + is used, the name on the line is the rate name for a kinetic reactant defined in a KINETICS data block. Default is +equilibrium_phase +. Optionally, +e + or +k +; only the first letter is checked.

+

+ +sites_per_mole +--Moles of surface sites per mole of phase or kinetic reactant, unitless (mol/mol).

+

+ +specific_area_per_mole +--Specific area of surface, in m +2 +/mol (square meter per mole) of equilibrium phase or kinetic reactant. Default is 0 m +2 +/mol.

+

+Line 10: +-no_edl +

+

+ +-no_edl +--Indicates that no electrostatic terms will be used in the mass-action equations for surface species and no explicit calculation of the diffuse-layer composition is performed. The identifiers +-no_edl +, +-diffuse_layer +, and +-Donnan + are mutually exclusive and apply to all surfaces in the surface assemblage. Optionally, +no_edl +, +-n +[ +o_edl +], +no_electrostatic +, +-n +[ +o_electrostatic +].

+

+ +Line 11: -ddl +

+

+ +-ddl--Indicates that the diffuse double layer model will be used for all surfaces defined in this SURFACE data block. The diffuse double layer model is the default and will be used if neither -cd_music nor -no_edl is defined. Optionally, ddl, -dd[l]. +

+

+ +Line 12: -ccm c +

+

+ +-ccm--Indicates that the surfaces in the surface assemblage use the constant-capacitance model. See Notes 1 for using diffuse double layer and -no_edl surfaces with constant capacitance surfaces. Different capacitances can be defined for different surfaces by using multiple line 11. Optionally, ccm, -cc[m], constant_capacitance, or -co[nstant_capacitance]. +

+

+ +c--Capacitance in F/m2 (farad per square meter). +

+
+
+
+Notes 1
+

+The databases included with PHREEQC contain thermodynamic data for a diffuse-double-layer surface named “Hfo” (Hydrous ferric oxide) that are derived from Dzombak and Morel (1990). Two sites are defined for this surface: a strong binding site, Hfo_s, and a weak binding site, Hfo_w. Note that Dzombak and Morel (1990) used 0.2 mol weak sites and 0.005 mol strong sites per mol Fe, a surface area of 5.33 +10 +4 + m +2 +/mol Fe, and a gram-formula weight of 89 g Hfo/mol Fe; to be consistent with their model, the relative number of strong and weak sites should remain constant as the total number of sites varies. To facilitate consistency, the identifier +-sites_units + +density + can be used, which calculates the number of sites from the site density (sites per square nanometer), the specific surface area (square meter per gram), and the mass (grams).

+

+A surface assemblage can have multiple surfaces, each of which can have multiple site types. +SURFACE + 1 in Example data block 1 has two surfaces, Surfa and Surfb. Surfa has two binding sites, Surfa_w and Surfa_s; they share the same surface area and have the same electrostatic potential. The link between the two is indicated by the shared surface name, which is followed by an underscore, “_”, and other letter(s) to distinguish the two types of sites. The surface area and mass for Surfa must be defined in the input data for at least one of the two binding sites. Surfb has only one kind of binding site and the area and mass must be defined as part of the input for the single binding site. +SURFACE + 2 is the same as +SURFACE + 1 except that an explicit calculation of the composition of the diffuse layer is specified. The identifier +-sites_units absolute + is equivalent to the default that is used in +SURFACE + 1.

+

+ +SURFACE + 3 defines a CD-MUSIC surface. The data are based on a description of binding on goethite (Hiemstra and Van Riemsdijk, 1996; Rahnemaie and others, 2006) that has two site types (Goe_uni and Goe_tri). The identifiers +-ddl, + +-equilibrate +, +-diffuse_layer +, +-sites_units +, +-cd_music +, +-Donnan +, +-only_counter_ions +, and +-no_edl + apply to all surfaces and site types in the surface assemblage. The identifier +-capacitances + is defined for each individual CD-MUSIC surface and does not apply to the entire surface assemblage. A combination of CD-MUSIC, diffuse double layer, and +-no_edl + surfaces cannot be used directly in a +SURFACE + assemblage. However, a diffuse-double-layer surface, like Surfa in +SURFACE + 1, will keep its properties in a CD-MUSIC surface assemblage when defined with very high capacitances; for example, +-capacitances + 1e5 1e5. Similarly, a +-no_edl +surface will keep its properties in a diffuse-double-layer surface if the surface area is very large (1 +10 +10 + m +2 + [square meter] for the product of +specific_area_per_gram + and +grams +). By extension, a +-no_edl + surface will keep its properties when defined in a CD_MUSIC surface assemblage if the surface area and capacitances are large. Thus, with these special definitions, + -cd_music + can be used to model simultaneously all of the available types of surfaces ( +-no_edl +, diffuse double layer, and CD-MUSIC). If a +-no_edl + surface with a large surface area is included in an assemblage together with identifier +-Donnan +, the thickness may have to be set +to a small number + to avoid the situation where the volume of EDL water becomes unrealistically large.

+

+ +SURFACE + 4 has one surface, Surfc, which has two binding sites, Surfc_w and Surfc_s. The number of binding sites for these two kinds of sites is determined by the amount of Fe(OH)3(a) in EQUILIBRIUM_PHASES 4, where 4 is the same number as the surface number. If +m + represents the moles of Fe(OH)3(a) in EQUILIBRIUM_PHASES 4, then the number of sites of Surfc_w is 0.1 +m ( +mol) and of Surfc_s is 0.001 +m + (mol). The surface area for Surfc is defined relative to the moles of Fe(OH)3(a), such that the surface area is 100,000 +m +(m +2 +). During batch-reaction simulations the moles of Fe(OH)3(a) in EQUILIBRIUM_PHASES 4 may change, in which case the number of sites of Surfc will change as will the surface area associated with Surfc. Whenever Fe(OH)3(a) precipitates, the specified amounts of Surfc_wOH and Surfc_sOH are formed and all the species that are surface-complexed and in the electrical double layer will be taken from the elements in the system. These formulas are charge balanced and the OH groups are part of the formula for Fe(OH)3(a). The OH is not used in the initial surface-composition calculation, but is critical when amounts of Fe(OH)3(a) vary. Erroneous results will occur if the formula is not charge balanced, and a warning message will be printed if the elements in the surface complex (other than the surface site itself) are not contained in sufficient quantities in the equilibrium phase or kinetic formula.

+

+The number of sites of Surfd in +SURFACE + 4 is determined by the amount of a kinetic reactant defined in KINETICS 4, where 4 is the same number as the surface number. Sites related to a kinetic reactant are exactly analogous to sites related to an equilibrium phase. The same restrictions apply--the formula must be charge balanced, and the elements in the surface complex (other than the surface site itself) should be included in the formula of the reactant.

+

+ +SURFACE + 5 is a template for modeling sorption and diffusion in clay rocks; in this case, the Opalinus Clay at Mont Terri in Switzerland (Appelo and others, 2010). A rock dry density of 2.7 kg/L, an overall porosity of 0.161, of which half is accessible for Cl-, a specific surface area of 37 m2/g, and an exchange capacity of 0.114 eq/kg (equivalent per kilogram) are translated to a surface that is defined relative to 1 L of pore water. Thus, 1 L of pore water is in contact with 2.7 + × +(1 - 0.161) / 0.161 = 14.07 kg rock. The surface has “clay_planar” sites that express the bulk exchange capacity of the rock (1.59 mol sites). The measured sorption isotherm for Cs+ indicates the presence of two sites: “clay_ii” sites with an intermediate strength for binding Cs+, and “clay_fes” sites on the frayed edges of illite with a very strong and very specific binding strength. The number of these sites and the complexation constants for Cs+ and other cations are obtained by fitting the isotherm, while accounting for two sorption types: one type is for surface complexation, which is specific for the various ions; the other type is connected with charge compensation in the Donnan space, which is in principle, the same for all equal-charged ions (although it can be varied with +-erm_DDL + in keyword SOLUTION_SPECIES to match observed differences). In +SURFACE + 5, the exclusion of Cl- is modeled with a Donnan pore space that contains only counter-ions (is Cl- free). Thus, it holds 0.5 L water and has a thickness (derived from this volume and the total area) of 0.5 +10 +-3 + / (37 + × +14.07 +10 +3 +) = 9.6 +10 +-10 + m. This thickness equals 1.9 Debye lengths at the ionic strength of the pore water of 0.368, which is in good agreement with anion-exclusion theory (Schofield, 1947; Tournassat and Appelo, 2011).

+

+An anion-free Donnan pore space is the simplest option and is in line with traditional calculations in soil science. Perhaps more realistically, the anion exclusion can be modeled with +-only_counter_ions + false and an increased thickness of the Donnan layer. The fraction of free (uncharged) pore water, ffree, follows from the Cl- accessible pore space and the potential in the Donnan space, ψD (V):

+
+
+

+ +, (6)

+

+where ε +a + is the accessible porosity (unitless), ε +tot + is the total porosity (unitless), F is the Faraday constant (96485 JV-1eq-1), R is the gas constant (8.314 JK-1mol-1), and T is the temperature (K). The potential in the Donnan space depends on the water composition and the surface charge, while the latter is also a function of the surface complexation constants: higher constants increase complexation and, usually, decrease the surface charge, provided the complexes are uncharged (charged complexes could increase the surface charge). By fixing the complexation constant for Na+ to -0.7, and the constants for the other major cations by matching the measured distribution coefficients in Opalinus Clay, the surface charge--that is, the part of the exchange capacity that is compensated in the Donnan pore space--can be calculated to be 45 percent (Appelo and others, 2010). This results in ffree = 0.117 and thus, 0.883 +10 +-3 + m +3 + (cubic meter) water in the Donnan pore space per m +3 + pore water. Accordingly, the thickness of the Donnan space becomes
+0.883 +10 +-3 + / (37 + × +14.07 +10 +3 +) = 1.7 +10 +-9 + m, or 3.4 Debye lengths.

+

+ +SURFACE + 6 illustrates the option to set the thickness of the Donnan layer to be a number of Debye lengths, κ +−1 +, given by + (m), where + +r + is the relative dielectric constant of water, T is the temperature (kelvin), and I is the ionic strength. Thus, for +SURFACE + 5, with +-only_counter_ions + true, the thickness can be defined to be +-Donnan debye_lengths + 1.9, while with +-only_counter_ions false + (the default option) the thickness is defined to be +-Donnan debye_lengths + 3.4 as in +SURFACE + 6. The thickness will now vary with the ionic strength of the solution, and the fraction of free pore water will be adjusted to maintain the same total amount of water. For program convergence, the fraction of Donnan water is limited with +limit_ddl + 0.9 in +SURFACE + 6 (default is +limit_ddl + 0.8).

+

+The chemical and physical properties of clay rocks can be measured precisely with diffusion experiments, and PHREEQC can model the experiments by calculating multicomponent diffusion with option +-multi_D + in keyword TRANSPORT. With this option, diffusion is calculated separately for the free (uncharged) pore water and the Donnan pore water, while each solute species has its own diffusion coefficient. It is probable that the electrostatic double layer, mimicked by the Donnan pore space in PHREEQC, has properties that are different from free pore water. The dielectric permittivity is lower in an electrostatic field, which will enhance the complexation of charged ions into neutral species. Such complexation will diminish anion exclusion, and will be different for different anions, depending on charge and hydration radius. This effect can be modeled by defining an enrichment factor in the Donnan pore space with + -erm_ddl + in keyword SOLUTION_SPECIES. Furthermore, the viscosity may be higher in the Donnan pore water than in ordinary water, and diffusion would be lower in proportion with the viscosity ratio. PHREEQC allows setting the viscosity ratio as illustrated in +SURFACE + 5 and +SURFACE + 6. (Default is 1.0)

+

+ +SURFACE + 7 defines a diffusion coefficient of 10-11 m2/s for a surface consisting of ferrihydrite particles (Hfo in the database). When the diffusion coefficient is larger than 0, the surface will advect and disperse like a normal solute species in a column defined with keyword TRANSPORT and +-multi_D + true, and it will diffuse in accordance with the diffusion coefficient. The surface must be neutral, either charge-free by itself, or by adding a Donnan layer that neutralizes the surface charge. In +SURFACE + 7, the Donnan layer is given a small thickness of only 1 picometer to avoid significant variation in water contents in the cells during transport. The transported surfaces will carry the elements in the surface complexed species, as well as the solutes in the Donnan layer. The diffusion coefficient of the surface, either the whole, or part of it, can be modified with the special Basic function CHANGE_SURF. If changed to 0 m2/s, the surface becomes immobile. Thus, +SURFACE + 7 is a colloidal particle that can transport heavy metals complexed on its surface while the diffusion coefficient is greater than zero, and it can coagulate with other particles and be deposited depending on chemical or physical conditions in the column by setting the diffusion coefficient to zero with CHANGE_SURF. An example is given at http://www.hydrochemistry.eu/exmpls/colloid.html (accessed June 25, 2012).

+

+Line 1 requires the program to make a calculation to determine the composition of a surface assemblage, termed an “initial surface calculation”. Before any batch-reaction or transport calculations, initial surface calculations are performed to determine the composition of the surface assemblages that would exist in equilibrium with the specified solution (solution 10 for +SURFACE + 1 in this Example data block). The composition of the solution will not change during these calculations. In contrast, during a batch-reaction calculation, when a surface assemblage (defined as in Example data block 1 or Example data block 2 of this section) is reacted with a solution with which it is not in equilibrium, both the surface composition and the solution composition will be adjusted to a new equilibrium.

+

+When + -diffuse_layer + or +-Donnan + is not used (default), any charge that develops on the surface during a reaction step will be accompanied by an equal, but opposite, charge imbalance for the solution. Thus, charge imbalances accumulate in the solution and on the surface when surfaces and solutions are separated. This handling of charge imbalances for surfaces is physically incorrect. Consider the following example, where a charge-balanced surface is brought together with a charge-balanced solution. Assume a positive charge develops at the surface. Now remove the surface from the solution. With the default formulation, a positive charge imbalance is associated with the surface, +Z + +s +, and a negative charge imbalance, +Z + +soln +, is associated with the solution. In reality, the charged surface plus the diffuse layer surrounding it is electrically neutral and the combination should be removed. This would leave an electrically neutral solution as well. The default formulation is workable; its main defect is that the counter-ions that should be in the diffuse layer are retained in the solution. The model results are adequate, provided solutions and surfaces are not separated or the exact concentrations of aqueous counter-ions are not critical to the investigation.

+

+The +-diffuse_layer + and +-Donnan + identifiers activate models to balance the accumulation of surface charge with an explicit calculation of the diffuse-layer composition. When these identifiers are used, the composition of the diffuse layer is calculated and an additional printout of the elemental composition of the diffuse layer is produced. The +-diffuse_layer +identifier calculates the moles of each aqueous species in the diffuse layer according to the method of Borkovec and Westall (1983) and the assumption that the diffuse layer is a constant thickness (optionally input with +-diffuse_layer +, default is 10 +-8 + m). The variation of thickness of the diffuse layer with ionic strength is ignored. The net charge in the diffuse layer exactly balances the net surface charge. The +-diffuse_layer + calculation requires an integration that is slow and liable to failure under certain conditions. The +-Donnan +calculation is much faster and more robust, and gives results that are usually similar to the +-diffuse_layer + calculation.

+

+In the +-Donnan + calculation, the concentrations in the diffuse layer are averaged and computed with:

+
+
+

+ +, (7)

+

+where cDonnan, i is the concentration of species i in the Donnan pore space (mol/L), ci is the concentration in the free (uncharged) solution, erm_DDLi is an enrichment factor (unitless) that can be defined in keyword SOLUTION_SPECIES, and zi is the charge number (unitless). The potential ψD is adjusted to let the charge of the Donnan volume counterbalance the surface charge:

+
+
+

+ +, (8)

+

+where σsurface is the surface charge (eq/L).

+

+Conceptually, the results of using the explicit diffuse-layer calculations are correct--charge imbalances on the surface are balanced in the diffuse layer and the solution remains charge balanced. Great uncertainties exist in the true composition of the diffuse layer and the thickness of the diffuse layer. The ion complexation in the bulk solution is assumed to apply in the diffuse layer, which is unlikely because of changes in the dielectric constant of water near the charged surface. Identifier +-erm_ddl + in keyword SOLUTION_SPECIES can correct for such effects if needed, but it is a primitive and arbitrary correction. The explicit diffuse layer calculation is based on assumptions that allow the volume of water in the diffuse layer to remain small relative to the solution volume. It is possible, especially for solutions of low ionic strength, for the calculated concentration of an element to be negative in the integrated diffuse layer (calculated with identifier +-diffuse_layer +). In this case, the assumed thickness of the diffuse layer is too small (or perhaps the entire diffuse-layer approach is inappropriate) and the program stops with an error message. The identifier +-only_counter_ions + offers an option to let only the counter-ions increase in concentration in the diffuse layer, and to leave the co-ions at the same concentration in the diffuse layer as in the bulk solution. The counter-ions have a higher concentration in the diffuse layer than without this option, because co-ion exclusion is neglected. Alternatively, when using +-only_counter_ions and -Donnan +, the co-ion concentration is zero in the Donnan pore space. In this case, the counter-ions will have a smaller concentration in the Donnan layer with +-only_counter_ions true, +than with +-only_counter_ions +false.

+

+A third alternative for modeling surface-complexation reactions, in addition to the default, +-diffuse_layer +, and +-cd_music +, is to ignore the surface potential entirely. The +-no_edl + identifier eliminates the potential term from mass-action expressions for surface species, eliminates any charge-balance equations for surfaces, and eliminates any charge-potential relationships. The charge on the surface is calculated and saved with the surface composition, and an equal and opposite charge is stored with the aqueous phase. All of the cautions about separation of charge, mentioned in the previous paragraphs, apply to the calculation using +-no_edl +. No explicit calculation of the diffuse-layer composition is available when using +-no_edl +.

+

+For transport calculations, it is much faster in terms of CPU time to use either the default (no explicit diffuse layer calculation) or +-no_edl +. However, +-Donnan + and +-diffuse_layer + can be used to test the sensitivity of the results to diffuse-layer effects.

+

+After a set of batch-reaction calculations has been simulated, it is possible to save the resulting surface composition with the SAVE keyword. If the new composition is not saved, the surface composition will remain the same as it was before the batch-reaction calculations. After it has been defined or saved, the surface composition may be used in subsequent simulations through the USE keyword. By using the RUN_CELLS data block, the results of the batch-reaction calculations, including the surface-assemblage composition, are automatically saved. In +ADVECTION + + + and TRANSPORT simulations, the surface assemblages in the column are automatically saved after each shift.

+
+
+Example data block 2
+
Line 0d:  SURFACE 1 Neutral surface composition
+
Line 1:	Surf_wOH		0.3		660.			0.25
+
Line 1a:	Surf_sOH		0.003
+
Line 2:	Surfc_sOH		Fe(OH)3(a)		equilibrium_phase			0.001
+
Line 2b:	Surfd_sOH		Al(OH)3(a)		kinetic_reactant 			0.001
+
+
+
+Explanation 2
+

+Line 0d: +SURFACE + [ +number +] [ +description +]

+

+Same as Example data block 1.

+

+Line 1: +surface binding-site formula, +( +sites +or + site density +) +, specific_area_per_gram, grams, +[ +Dw + + coefficient +]

+

+ +surface binding-site formula +--Formula for a surface that is charge balanced.

+

+ +sites +--Total number of sites for this binding site, in moles; applies when +-sites_units + is +absolute +.

+

+ +site density +--Site density for this binding site, in sites per square nanometer; applies when +-sites_units + is +density +.

+

+ +specific_area_per_gram +--Specific area of surface, in m +2 +/g (square meter per gram). Default is 600 m +2 +/g.

+

+ +grams +--Mass of solid for calculation of surface area, g (gram); surface area is +grams +times + specific_area_per_gram +. Default is 0 g.

+

+ +Dw + + coefficient +--Optional diffusion coefficient for the surface, m +2 +/s; applies only when +-multi_D +is true in a TRANSPORT calculation. If coefficient > 0, the surface is transported as a colloid with advective, dispersive, and diffusive transport. Default is 0 m +2 +/s, which means the surface is immobile.

+

+Line 2: +surface binding-site formula, name, +[( +equilibrium_phase +or + kinetic_reactant +)] +, sites_per_mole, specific_area_per_mole +

+

+Same as Line 9 in Example data block 1.

+
+
+
+Notes 2
+

+The difference between Example data block 2 and Example data block 1 is that no initial surface-composition calculation is performed in Example data block 2. The composition of the surface assemblage must be given precisely (from chemical analysis) and charge-balanced to avoid spurious pH and redox reactions. Additional surfaces and binding sites can be defined by repeating Lines 2 and 9 from Example data block 1. All other identifiers listed for Example data block 1 also can be included.

+
+
+
+Example problems
+

+The keyword +SURFACE + is used in example problems 8, 14, 19, and 21.

+
+
+
+Related keywords
+

+ADVECTION, COPY, DELETE, DUMP, RUN_CELLS, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, SAVE +surface +, +TRANSPORT + + +, and USE +surface +.

+
+
+

| Next || Previous || Top |

+ diff --git a/HTMLversion/HTML/phreeqc3-56.htm b/HTMLversion/HTML/phreeqc3-56.htm index fd02468e1..507afcdb7 100644 --- a/HTMLversion/HTML/phreeqc3-56.htm +++ b/HTMLversion/HTML/phreeqc3-56.htm @@ -24,16 +24,16 @@ David Parkhurst David Parkhurst - 3 - 60 + 4 + 82 2024-04-29T02:08:00Z - 2024-05-06T17:11:00Z - 15 - 8045 - 45862 - 382 - 107 - 53800 + 2024-05-08T14:37:00Z + 16 + 8148 + 46450 + 387 + 108 + 54490 16.00 @@ -45,7 +45,7 @@ -REACTION +RATE_PARAMETERS_HERMANSKA - REACTION + RATE_PARAMETERS_PK -REACTION +RATE_PARAMETERS_SVD - REACTION - - - - - - - - - - - - - -
- -
- -
- -
- -

| Next || Previous -|| Top |

- -

RATE_PARAMETERS_PK

- -

This keyword data block is -used to define rate parameters in the style of Palandri -and Kharaka (2004). The parameters can be used by the -Basic function RATE_PK to calculate kinetic rates for any mineral in the data -block. It is expected that the function RATE_PK will be used in rate -definitions in the RATES data block. RATE_PK calculates rates without -surface area or affinity factors. These factors can be added in the RATES -definition.

- -
- -
Example data block
- -
Line 0:  RATE_PARAMETER_PK
Line 1:  Quartz  -30   0    0  -13.4 90.9 -30   0    0
Line 2:  Calcite -0.3  14.4 1  -5.81 23.5 -3.48 35.4 1 33
Line 3:  Pyrite  -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35
 
- -
- -
Explanation
- -

Line 0: RATE_PARAMETERS_PK

- -

RATE_PARAMETERS_PK is the -keyword for the data block.

- -

Line 1: Mineral name, Acid_log_K , E, n(H+), Neutral_log_K, E, Base_log_K, E, -n(OH-)

- -

Mineral name –Name of the mineral for which rates can be -calculated.

- -

Acid_log_K –Log of acid rate parameter.

- -

E—Activation energy for the -acid reaction.

- -

n(H+)—Exponent of activity -of H+ in the rate equation.

- -

Neutral_log_K—Log of neutral rate parameter.

- -

E—Activation energy for the -acid reaction.

- -

Base_log_K—Log of base rate parameter.

- -

E—Activation energy for the -base reaction.

- -

n(OH-)—Exponent used in the -base reaction.

- -

Line 2: Mineral name, Acid_log_K , -E, n(H+), Neutral_log_K, E, PCO2_log_K, E, n(PCO2), -33

- -

Mineral name –Name of the -mineral for which rates can be calculated.

- -

Acid_log_K –Log of acid rate parameter.

- -

E—Activation energy for the -acid reaction.

- -

n(H+)—Exponent of activity -of H+ in the rate equation.

- -

Neutral_log_K—Log of neutral rate parameter.

- -

E—Activation energy for the -acid reaction.

- -

PCO2_log_K—Log of CO2 rate -parameter.

- -

E—Activation energy for the -CO2 reaction.

- -

n(PCO2)—Exponent used in -the CO2 reaction.

- -

33—Identifier that the -equation related to table 33 in Palandri and Kharaka (2004) is to be used in the rate calculation.

- -

Line 3: Mineral name, Acid/Fe+3_log_K , E, n(H+), n(Fe+3), Neutral/O2_log_K, E, n(O2), Base_log_K, E, n(OH-), 35

- -

Mineral name –Name of the -mineral for which rates can be calculated.

- -

Acid/Fe+3_log_K –Log of -acid rate parameter including Fe+3.

- -

E—Activation energy for the -acid plus Fe+3 reaction.

- -

n(H+)—Exponent of activity -of H+ in the rate equation.

- -

n(Fe+3)—Exponent of -activity of Fe+3 in the rate equation.

- -

Neutral/O2_log_K—Log of -neutral rate parameter.

- -

E—Activation energy for the -acid reaction.

- -

n(O2)—Exponent of O2 in -neutral rate reaction.

- -

Base_log_K—Log of base rate parameter.

- -

E—Activation energy for the -base reaction.

- -

n(OH-)—Exponent used in the -base reaction.

- -

35—Identifier that the -equation related to table 35 in Palandri and Kharaka (2004) is to be used in the rate calculation.

- -

 

- -

 

- -
- -
- -
Notes
- -

Line 1 applies to all tables of minerals parameter in Palandri and Kharaka (2004) -except Table 33 and Table 35. Table 33 includes terms related to CO2, and Table -35 includes terms related to Fe+3 and O2.

- -
- -
- -
- -
- -

| -Next || Previous || -Top |

- -
- - - - diff --git a/database/phreeqc_rates.dat b/database/phreeqc_rates.dat index 97fb40f14..787c3083b 100644 --- a/database/phreeqc_rates.dat +++ b/database/phreeqc_rates.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -1897,24 +1897,27 @@ Pyrolusite # # Additional definition of PHASES, RATE parameters, and RATES examples # -# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). +# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. # -# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, -# Belyazid, Kurz, and Akselsson (2019). +# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. # -# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, -# Declercq, and Oelkers (2023). +# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632. + # -# Example RATES definitions include +# Example RATES definitions and input files with KINETICS show the application in # Albite_PK # Palandri and Kharaka # Albite_Svd # Sverdrup -# Albite_Hermanska # +# Albite_Hermanska +# Calcite_PK # Palandri and Kharaka +# Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. # Quartz_PK # Palandri and Kharaka # Quartz_Svd # Sverdrup # Quartz_Hermanska # # Quartz_Rimstidt_Barnes +# Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals +# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat. Actinolite # Hornblende, Ferroactinolite Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15H+ + 7H2O = 0.500Al+3 + 2Ca+2 + 2.500Fe+2 + 2.250Mg+2 + 7.750H4SiO4 log_k 7.128 @@ -2610,9 +2613,18 @@ Albite_Hermanska # 40 SAVE area * rate * affinity * TIME -end # +# Example RATES definition for Calcite +# +Calcite_PK # Palandri and Kharaka, 2004 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_PK("calcite") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end +# # Example RATES definitions for Quartz # -RATES Quartz_PK # Palandri and Kharaka, 2004 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END @@ -2645,8 +2657,329 @@ Quartz_Rimstidt_Barnes 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 40 SAVE area * rate * affinity * TIME -end - +# +# Example RATES definition for Montmorillonite, a solid solution with exchangeable cations reacting fast; their ratios are related to the changing solution composition and their amounts are connected to the kinetic reacting TOT layer. +# +# The affinity is related to a solid soution member, given by the fraction of the exchangeable cation (here Na+). The exchange species are defined in the (example) input file, below. +# +Montmorillonite +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) +# 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end END + +# Example input files for KINETICS calculations +# +# compare Albite kinetics using rates from the compilations +# ========================================================= + +# KINETICS 1 +# Albite_PK +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# -m0 1; -time 1 # default +# END + +# SOLUTION 1 +# PHASES + # Fix_pH; H+ = H+ + # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant +# SELECTED_OUTPUT 1 + # -file kinetic_rates_pH.inc + # -reset false +# USER_PUNCH 1 # write out the pH's to equilibrate... + # 10 FOR i = 0 to 14 STEP 0.5 + # 20 punch EOL$ + 'USE solution 1' + # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + # 40 punch EOL$ + ' LiBr' + # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + # 60 punch EOL$ + 'USE kinetics 1' + # 70 punch EOL$ + 'END' + # 80 NEXT i +# END + +# PRINT; -reset false +# SELECTED_OUTPUT 1; -active false +# USER_GRAPH 1; -headings pH Palandri +# -axis_titles pH "log10(initial rate / (mol / m2 / s))" +# -axis_scale x_axis 0 14 +# 10 graph_x -la("H+") +# 20 graph_sy log10(tot("Al")) +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite_Svd +# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite +# -formula NaAlSi3O8; -parms 1 20 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup`95*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite_Hermanska +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# USER_GRAPH 1; -headings pH Hermanska +# INCLUDE$ kinetic_rates_pH.inc +# END + +# USE solution 1 +# REACTION_TEMPERATURE 1; 25 25 in 21 +# USER_GRAPH 1; -headings Albite_data +# 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 +# 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963–993. +# 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i +# 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i +# 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle +# END + +# compare rates for calcite dissolution +# ===================================== + +# USER_GRAPH 1; -active false + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -2.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3; -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# INCREMENTAL_REACTIONS true +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 +# -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 # cm^2/mol calcite, exp factor +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -1.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3 +# -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# compare rates for quartz dissolution +# ===================================== + +# USER_GRAPH 2; -active false +# SOLUTION 1 +# pH 7 charge +# KINETICS 1 +# Quartz_PK +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# INCREMENTAL_REACTIONS true +# USER_GRAPH 3; -headings h Palandri +# -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Hermanska +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Hermanska +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Svd +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Sverdup +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Rimstidt_Barnes +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt.et.al +# END + +# SOLUTION 1 +# pH 7 charge; Na 30; Cl 30 +# KINETICS 1 +# Quartz_Svd +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Sverdup_NaCl +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Rimstidt_Barnes +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt.et.al._NaCl +# END + +# Example input file for calculating montmorillonite dissolution +# ============================================================== + +# USER_GRAPH 3; -active false + +# EXCHANGE_MASTER_SPECIES +# X_montm_mg X_montm_mg-0.34 +# EXCHANGE_SPECIES +# # The Gapon formulation is easiest... + # X_montm_mg-0.34 = X_montm_mg-0.34 +# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.830 # 0.581 # +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # + +# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX +# # # uncomment the following lines to see the effect... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 +# # # also adapt the log_k`s of the solids... +# # PHASES +# # Montmorillonite(MgMg) +# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + # # log_k 2.73 +# # Montmorillonite(MgCa) +# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.83 + +# # # The divalent cations can be defined with the Gaines-Thomas convention... +# # EXCHANGE_SPECIES +# # # undefine the previous set... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 +# # # write the Gaines-Thomas formulas... +# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # + +# # # The default exchanger X can be used, uncomment the follwing lines +# # # redefine f_Na in the rate... +# # RATES +# # Montmorillonite +# # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +# # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# # 40 SAVE area * rate * affinity * TIME +# # -end +# # # adapt log_k`s of the solids with default exchanger X: +# # PHASES +# # Montmorillonite(MgK) +# # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 +# # Montmorillonite(MgMg) +# # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 + # # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 +# # Montmorillonite(MgCa) +# # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 + # # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 +# # # in EXCHANGE 1, comment X_montm_mg, uncomment X... +# END + +# SOLUTION 1 +# pH 7 charge; +# Na 1e-5 +# K 1e-5 +# Mg 1e-5 +# Ca 1e-5 +# END + +# # Give the solution composition for calculating the ininitial exchanger +# SOLUTION 99 +# pH 7 charge +# EQUILIBRIUM_PHASES 1 +# # solid solution of the end-members, SI = log10(fraction = 0.25) +# Montmorillonite(MgNa) -0.602 1e-2 +# Montmorillonite(MgCa) -0.602 1e-2 +# Montmorillonite(MgK) -0.602 1e-2 +# Montmorillonite(MgMg) -0.602 1e-2 +# Kaolinite 0 0 +# SAVE solution 99 +# END + +# # # with Gapon only, initial exchanger can be defined explicitly +# EXCHANGE 1 +# Na0.34X_montm_mg 1e-2 +# Ca0.17X_montm_mg 1e-2 +# K0.34X_montm_mg 1e-2 +# Mg0.17X_montm_mg 1e-2 +# END + +# USE solution 1 +# EQUILIBRIUM_PHASES 1 +# Kaolinite 0 0 +# # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 +# EXCHANGE 1 +# X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 +# # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 +# KINETICS 1 +# Montmorillonite +# -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 +# -m 4e-2 +# -parms 0 2.5e5 1 0.67 +# -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 +# -cvode true +# INCREMENTAL_REACTIONS true +# USER_GRAPH 4 + # -headings time Na K Mg Ca + # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" + # -axis_scale x_axis auto auto auto auto log + # -axis_scale y_axis auto auto auto auto log +# 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) +# 10 GRAPH_X t +# 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 +# 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 +# 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca +# 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 +# END +# USE solution 99; REACTION +# USER_GRAPH 4; -connect_simulations false; -headings Solution_99 +# 1 t = get(1) +# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange + # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), @@ -2708,4 +3041,4 @@ END # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with -# measured solubilities as a function of (P, T). +# measured solubilities as a function of (P, T). \ No newline at end of file diff --git a/examples/ex21 b/examples/ex21 index 8b0435497..e255d814d 100644 --- a/examples/ex21 +++ b/examples/ex21 @@ -12,13 +12,13 @@ SOLUTION_MASTER_SPECIES Cs Cs+ 0.0 132.905 132.905 SOLUTION_SPECIES # start with finding tortuosity from HTO - Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 -# estimate f_free and f_DL_charge, increase tortuosity - Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 + Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. +# estimate f_free and f_DL_charge, increase tortuosity + Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 # use erm_ddl to fit Na - Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 + Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 # use interlayer diffusion to fit Cs - Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 + Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -81,7 +81,7 @@ USER_PUNCH 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) # 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) # adapted for the harmonic mean calc's in version 3.4.2 -140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) +140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' # 152 correct_$ = ' true' # if 'true' correct the co-ion concentrations in the Donnan volume @@ -110,10 +110,10 @@ USER_PUNCH 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells -390 f_free = 0.02 # fraction of free pore water (0.01 - 1) -400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer -# 400 f_free = 0.1 : f_DL_charge = 0.47 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ -410 tort_n = -0.975 # exponent in Archie's law, found from HTO +390 f_free = 0.11 # fraction of free pore water (0.01 - 1) +400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer +# 400 f_free = 0.2 : f_DL_charge = 0.5 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ +410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation diff --git a/examples/ex21.out b/examples/ex21.out index c2413c734..0d4c7f739 100644 --- a/examples/ex21.out +++ b/examples/ex21.out @@ -1,4 +1,4 @@ - Input file: ../examples/ex21 + Input file: ex21 Output file: ex21.out Database file: ../database/phreeqc.dat @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -33,21 +33,21 @@ Reading input data for simulation 1. Hto = Hto log_k 0 gamma 1e5 0 - dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 + dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. Cl_tr- = Cl_tr- log_k 0 gamma 3.5 0.015 - dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 + dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 Na_tr+ = Na_tr+ log_k 0 gamma 4.0 0.075 - dw 1.33e-9 0 0 0 0 0 0.5 - erm_ddl 1.39 + dw 1.33e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 Cs+ = Cs+ log_k 0 gamma 3.5 0.015 - dw 2.07e-9 0 0 0 0 0 0.5 - erm_ddl 1.39 + dw 2.07e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -199,7 +199,7 @@ Reading input data for simulation 2. 110 thickn_clay = r_ext - r_int # clay thickness / m 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) - 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) + 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) @@ -219,9 +219,9 @@ Reading input data for simulation 2. 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells - 390 f_free = 0.02 # fraction of free pore water (0.01 - 1) - 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer - 410 tort_n = -0.975 # exponent in Archie's law, found from HTO + 390 f_free = 0.11 # fraction of free pore water (0.01 - 1) + 400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer + 410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation @@ -436,15 +436,15 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29068 + Specific Conductance (µS/cm, 23°C) = 29069 Density (g/cm³) = 1.01168 - Volume (L) = 0.20146 - Viscosity (mPa s) = 0.96933 + Volume (L) = 0.20147 + Viscosity (mPa s) = 0.96935 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.633e-01 Mass of water (kg) = 2.000e-01 - Total carbon (mol/kg) = 4.808e-04 - Total CO2 (mol/kg) = 4.808e-04 + Total carbon (mol/kg) = 4.811e-04 + Total CO2 (mol/kg) = 4.811e-04 Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 @@ -460,26 +460,26 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. OH- 5.188e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 H+ 3.237e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 -C(4) 4.808e-04 - HCO3- 3.732e-04 2.653e-04 -3.428 -3.576 -0.148 25.30 - NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 - CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 - MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 - CO2 1.470e-05 1.553e-05 -4.833 -4.809 0.024 34.33 - CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 - MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 - CO3-2 1.860e-06 4.753e-07 -5.731 -6.323 -0.593 -1.75 - SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) - KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 - SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 - (CO2)2 3.810e-12 4.142e-12 -11.419 -11.383 0.036 68.67 +C(4) 4.811e-04 + HCO3- 3.911e-04 2.781e-04 -3.408 -3.556 -0.148 25.30 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + (CO2)2 4.185e-12 4.551e-12 -11.378 -11.342 0.036 68.67 Ca 2.580e-02 - Ca+2 2.427e-02 6.744e-03 -1.615 -2.171 -0.556 -17.03 - CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 - CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 - CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 - CaOH+ 6.029e-08 4.411e-08 -7.220 -7.355 -0.136 (0) - CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) + Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Cl 3.000e-01 Cl- 3.000e-01 2.018e-01 -0.523 -0.695 -0.172 18.53 HCl 1.239e-09 1.768e-09 -8.907 -8.752 0.155 (0) @@ -489,50 +489,50 @@ Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 K+ 1.584e-03 1.057e-03 -2.800 -2.976 -0.176 9.40 - KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 - KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 Mg 1.690e-02 - Mg+2 1.548e-02 4.737e-03 -1.810 -2.324 -0.514 -20.64 - MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 - Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 - MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 - MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 - MgOH+ 7.695e-07 5.652e-07 -6.114 -6.248 -0.134 (0) + Mg+2 1.548e-02 4.737e-03 -1.810 -2.325 -0.514 -20.64 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + MgOH+ 7.694e-07 5.651e-07 -6.114 -6.248 -0.134 (0) Na 2.400e-01 Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 - NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 NaOH 5.351e-18 5.818e-18 -17.272 -17.235 0.036 (0) O(0) 2.438e-04 O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 S(6) 1.410e-02 - SO4-2 5.877e-03 1.376e-03 -2.231 -2.861 -0.631 32.28 - NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 - MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 - SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 - KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 - Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 + SO4-2 5.877e-03 1.376e-03 -2.231 -2.862 -0.631 32.29 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 - CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Sr 5.050e-04 - Sr+2 4.727e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 - SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 - SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) - SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 - SrOH+ 3.781e-10 2.652e-10 -9.422 -9.576 -0.154 (0) + Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + SrOH+ 3.780e-10 2.652e-10 -9.422 -9.576 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) Anhydrite -0.78 -5.03 -4.26 CaSO4 - Aragonite -0.17 -8.49 -8.32 CaCO3 + Aragonite -0.15 -8.47 -8.32 CaCO3 Arcanite -6.91 -8.81 -1.91 K2SO4 - Calcite -0.03 -8.49 -8.47 CaCO3 + Calcite -0.01 -8.47 -8.47 CaCO3 Celestite -0.10 -6.74 -6.65 SrSO4 - CO2(g) -3.36 -4.81 -1.44 CO2 - Dolomite -0.09 -17.14 -17.05 CaMg(CO3)2 + CO2(g) -3.34 -4.79 -1.44 CO2 + Dolomite -0.05 -17.10 -17.05 CaMg(CO3)2 Epsomite -3.47 -5.22 -1.75 MgSO4:7H2O Gypsum -0.46 -5.04 -4.58 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 @@ -542,7 +542,7 @@ Sr 5.050e-04 Kieserite -4.02 -5.19 -1.17 MgSO4:H2O Mirabilite -3.12 -4.44 -1.33 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 - Strontianite -0.94 -10.21 -9.27 SrCO3 + Strontianite -0.92 -10.18 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl Thenardite -4.11 -4.40 -0.29 Na2SO4 @@ -579,7 +579,7 @@ Reading input data for simulation 3. Fe(2) 0.0 Alkalinity 0.476 SOLUTION 5 - water 1.3217e-05 + water 7.2695e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -594,15 +594,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 5 equilibrate 5 - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5 equilibrate 5 - X 4.6718e-04 + X 5.8893e-04 SOLUTION 6 - water 1.6259e-05 + water 8.9423e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -617,15 +617,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 6 equilibrate 6 - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6 equilibrate 6 - X 5.7468e-04 + X 7.2444e-04 SOLUTION 7 - water 1.9300e-05 + water 1.0615e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -640,15 +640,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 7 equilibrate 7 - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7 equilibrate 7 - X 6.8218e-04 + X 8.5995e-04 SOLUTION 8 - water 2.2341e-05 + water 1.2288e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -663,15 +663,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 8 equilibrate 8 - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8 equilibrate 8 - X 7.8967e-04 + X 9.9547e-04 SOLUTION 9 - water 2.5383e-05 + water 1.3960e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -686,15 +686,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 9 equilibrate 9 - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9 equilibrate 9 - X 8.9717e-04 + X 1.1310e-03 SOLUTION 10 - water 2.8424e-05 + water 1.5633e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -709,15 +709,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 10 equilibrate 10 - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10 equilibrate 10 - X 1.0047e-03 + X 1.2665e-03 SOLUTION 11 - water 3.1465e-05 + water 1.7306e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -732,15 +732,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 11 equilibrate 11 - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11 equilibrate 11 - X 1.1122e-03 + X 1.4020e-03 SOLUTION 12 - water 3.4507e-05 + water 1.8979e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -755,15 +755,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 12 equilibrate 12 - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12 equilibrate 12 - X 1.2197e-03 + X 1.5375e-03 SOLUTION 13 - water 3.7548e-05 + water 2.0651e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -778,15 +778,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 13 equilibrate 13 - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13 equilibrate 13 - X 1.3272e-03 + X 1.6730e-03 SOLUTION 14 - water 4.0589e-05 + water 2.2324e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -801,15 +801,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 14 equilibrate 14 - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14 equilibrate 14 - X 1.4347e-03 + X 1.8085e-03 SOLUTION 15 - water 4.3631e-05 + water 2.3997e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -824,13 +824,13 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 15 equilibrate 15 - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15 equilibrate 15 - X 1.5422e-03 + X 1.9441e-03 SOLUTION 16 water 5.0266e-03 pH 7.6 @@ -879,29 +879,29 @@ Reading input data for simulation 3. MIX 3 4 6.6932e-04 MIX 4 - 5 2.0070e-04 + 5 1.9357e-04 MIX 5 - 6 1.6165e-04 + 6 1.5439e-04 MIX 6 - 7 1.9501e-04 + 7 1.8625e-04 MIX 7 - 8 2.2837e-04 + 8 2.1811e-04 MIX 8 - 9 2.6173e-04 + 9 2.4997e-04 MIX 9 - 10 2.9509e-04 + 10 2.8183e-04 MIX 10 - 11 3.2845e-04 + 11 3.1369e-04 MIX 11 - 12 3.6180e-04 + 12 3.4555e-04 MIX 12 - 13 3.9516e-04 + 13 3.7741e-04 MIX 13 - 14 4.2852e-04 + 14 4.0927e-04 MIX 14 - 15 4.6188e-04 + 15 4.4113e-04 MIX 15 - 16 7.9394e-04 + 16 7.6509e-04 MIX 16 17 4.2533e-03 END @@ -913,7 +913,7 @@ Reading input data for simulation 3. bcond 1 2 stagnant 15 timest 1.5429e+03 - multi_d true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + multi_d true 2.5000e-09 1.5900e-01 0.0 1 interlayer_d true 0.001 0.0 1300 punch_frequency 14 punch_cells 17 @@ -939,3 +939,7 @@ Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... END +-------------------------------- +End of Run after 54.706 Seconds. +-------------------------------- + diff --git a/examples/radial b/examples/radial index dde9f8dc1..813fce04a 100644 --- a/examples/radial +++ b/examples/radial @@ -9,137 +9,137 @@ SOLUTION 4; -water 1.3963e-03 # cells in Opalinus Clay... -SOLUTION 5; -water 1.3217e-05 +SOLUTION 5; -water 7.2695e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 5; -equil 5; - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5; -equil 5; - X 4.6718e-04 + X 5.8893e-04 -SOLUTION 6; -water 1.6259e-05 +SOLUTION 6; -water 8.9423e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 6; -equil 6; - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6; -equil 6; - X 5.7468e-04 + X 7.2444e-04 -SOLUTION 7; -water 1.9300e-05 +SOLUTION 7; -water 1.0615e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 7; -equil 7; - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7; -equil 7; - X 6.8218e-04 + X 8.5995e-04 -SOLUTION 8; -water 2.2341e-05 +SOLUTION 8; -water 1.2288e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 8; -equil 8; - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8; -equil 8; - X 7.8967e-04 + X 9.9547e-04 -SOLUTION 9; -water 2.5383e-05 +SOLUTION 9; -water 1.3960e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 9; -equil 9; - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9; -equil 9; - X 8.9717e-04 + X 1.1310e-03 -SOLUTION 10; -water 2.8424e-05 +SOLUTION 10; -water 1.5633e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 10; -equil 10; - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10; -equil 10; - X 1.0047e-03 + X 1.2665e-03 -SOLUTION 11; -water 3.1465e-05 +SOLUTION 11; -water 1.7306e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 11; -equil 11; - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11; -equil 11; - X 1.1122e-03 + X 1.4020e-03 -SOLUTION 12; -water 3.4507e-05 +SOLUTION 12; -water 1.8979e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 12; -equil 12; - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12; -equil 12; - X 1.2197e-03 + X 1.5375e-03 -SOLUTION 13; -water 3.7548e-05 +SOLUTION 13; -water 2.0651e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 13; -equil 13; - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13; -equil 13; - X 1.3272e-03 + X 1.6730e-03 -SOLUTION 14; -water 4.0589e-05 +SOLUTION 14; -water 2.2324e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 14; -equil 14; - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14; -equil 14; - X 1.4347e-03 + X 1.8085e-03 -SOLUTION 15; -water 4.3631e-05 +SOLUTION 15; -water 2.3997e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 15; -equil 15; - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15; -equil 15; - X 1.5422e-03 + X 1.9441e-03 # tracer-out filter cells... @@ -170,18 +170,18 @@ END # mixing factors... MIX 3; 4 6.6932e-04 -MIX 4; 5 2.0070e-04 -MIX 5; 6 1.6165e-04 -MIX 6; 7 1.9501e-04 -MIX 7; 8 2.2837e-04 -MIX 8; 9 2.6173e-04 -MIX 9; 10 2.9509e-04 -MIX 10; 11 3.2845e-04 -MIX 11; 12 3.6180e-04 -MIX 12; 13 3.9516e-04 -MIX 13; 14 4.2852e-04 -MIX 14; 15 4.6188e-04 -MIX 15; 16 7.9394e-04 +MIX 4; 5 1.9357e-04 +MIX 5; 6 1.5439e-04 +MIX 6; 7 1.8625e-04 +MIX 7; 8 2.1811e-04 +MIX 8; 9 2.4997e-04 +MIX 9; 10 2.8183e-04 +MIX 10; 11 3.1369e-04 +MIX 11; 12 3.4555e-04 +MIX 12; 13 3.7741e-04 +MIX 13; 14 4.0927e-04 +MIX 14; 15 4.4113e-04 +MIX 15; 16 7.6509e-04 MIX 16; 17 4.2533e-03 END TRANSPORT @@ -189,7 +189,7 @@ TRANSPORT -shifts 1120 -flow diff; -cells 1; -bcon 1 2; -stag 15 -time 1.5429e+03 - -multi_D true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + -multi_D true 2.5000e-09 1.5900e-01 0.0 1 -interlayer_D true 0.001 0.0 1300 -punch_fr 14; -punch_c 17 USER_GRAPH 1 Example 21 diff --git a/mytest/CMakeLists.txt b/mytest/CMakeLists.txt index 31fc78afa..8fce75072 100644 --- a/mytest/CMakeLists.txt +++ b/mytest/CMakeLists.txt @@ -7,6 +7,7 @@ set(TESTS adapted_minteq advect_ranges aj1 + albite_rates alkalinity all_llnl andra_kin_ss @@ -218,6 +219,7 @@ set(TESTS katz KCl KCl-SO4 + kin_r kin_time kinetic_rates kinetic_rates_plus diff --git a/mytest/albite_rates b/mytest/albite_rates new file mode 100644 index 000000000..cfb4d5a97 --- /dev/null +++ b/mytest/albite_rates @@ -0,0 +1,316 @@ +DATABASE ../database/phreeqc_rates.dat +SELECTED_OUTPUT 101 + -file albite_rates_101.sel +USER_PUNCH 101 + -headings Mu SC + -start +10 PUNCH STR_F$(MU, 20, 12) +20 PUNCH STR_F$(SC, 20, 10) + -end +END +# Example input files for KINETICS calculations +# +# compare Albite kinetics using rates from the compilations +# ========================================================= + +KINETICS 1 +Albite_PK +-formula NaAlSi3O8; -parms 0 1 1 0.67 +-m0 1; -time 1 # default +END + +SOLUTION 1 +PHASES + Fix_pH; H+ = H+ + LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant +SELECTED_OUTPUT 1 + -file albite_rates.inc + -reset false +USER_PUNCH 1 # write out the pH's to equilibrate... + 10 FOR i = 0 to 14 STEP 0.5 + 20 punch EOL$ + 'USE solution 1' + 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + 40 punch EOL$ + ' LiBr' + 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + 60 punch EOL$ + 'USE kinetics 1' + 70 punch EOL$ + 'END' + 80 NEXT i +END + +PRINT; -reset false +SELECTED_OUTPUT 1; -active false +USER_GRAPH 1; -headings pH Palandri +-axis_titles pH "log10(initial rate / (mol / m2 / s))" +-axis_scale x_axis 0 14 +10 graph_x -la("H+") +20 graph_sy log10(tot("Al")) +INCLUDE$ albite_rates.inc +END + +KINETICS 1 +Albite_Svd +-formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 +USER_GRAPH 1; -headings pH Sverdup*20 +INCLUDE$ albite_rates.inc +END + +KINETICS 1 +Albite +-formula NaAlSi3O8; -parms 1 20 # roughness = 20 +USER_GRAPH 1; -headings pH Sverdup`95*20 +INCLUDE$ albite_rates.inc +END + +KINETICS 1 +Albite_Hermanska +-formula NaAlSi3O8; -parms 0 1 1 0.67 +USER_GRAPH 1; -headings pH Hermanska +INCLUDE$ albite_rates.inc +END + +USE solution 1 +REACTION_TEMPERATURE 1; 25 25 in 21 +USER_GRAPH 1; -headings Albite_data +10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 +20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963–993. +30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i +40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i +50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle +END + +compare rates for calcite dissolution +===================================== + +USER_GRAPH 1; -active false + +SOLUTION 1 +pH 7 charge; C(4) 1 CO2(g) -2.5 +KINETICS 1 +calcite_PK +-formula CaCO3; -parms 0 1e-2 1 0.67 +-time 0.1 10*1 hour +INCREMENTAL_REACTIONS true +USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 +-axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" +10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 +END + +USE solution 1 +KINETICS 1 +Calcite +-parms 1e2 0.67 # cm^2/mol calcite, exp factor +-time 0.1 10*1 hour +USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +END + +SOLUTION 1 +pH 7 charge; C(4) 1 CO2(g) -1.5 +KINETICS 1 +calcite_PK +-formula CaCO3 +-parms 0 1e-2 1 0.67 +-time 0.1 10*1 hour +USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 +END + +USE solution 1 +KINETICS 1 +Calcite +-parms 1e2 0.67 +-time 0.1 10*1 hour +USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +END + +compare rates for quartz dissolution +===================================== + +USER_GRAPH 2; -active false +SOLUTION 1 +pH 7 charge +KINETICS 1 +Quartz_PK +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +INCREMENTAL_REACTIONS true +USER_GRAPH 3; -headings h Palandri +-axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" +10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 +END + +USE solution 1 +KINETICS 1 +Quartz_Hermanska +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +USER_GRAPH 3 +-headings H Hermanska +END + +USE solution 1 +KINETICS 1 +Quartz_Svd +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +USER_GRAPH 3 +-headings H Sverdup +END + +USE solution 1 +KINETICS 1 +Quartz_Rimstidt_Barnes +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +USER_GRAPH 3 +-headings H Rimstidt.et.al +END + +SOLUTION 1 +pH 7 charge; Na 30; Cl 30 +KINETICS 1 +Quartz_Svd +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +USER_GRAPH 3 +-headings H Sverdup_NaCl +END + +USE solution 1 +KINETICS 1 +Quartz_Rimstidt_Barnes +-formula SiO2 +-parms 0 6 1 0.67 +-time 0.1 10*1 year +USER_GRAPH 3 +-headings H Rimstidt.et.al._NaCl +END + +Example input file for calculating montmorillonite dissolution +============================================================== + +USER_GRAPH 3; -active false + +EXCHANGE_MASTER_SPECIES +X_montm_mg X_montm_mg-0.34 +EXCHANGE_SPECIES +# The Gapon formulation is easiest... + X_montm_mg-0.34 = X_montm_mg-0.34 +0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.830 # 0.581 # +0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # + +# # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX +# # uncomment the following lines to see the effect... +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73 +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 +# # also adapt the log_k`s of the solids... +# PHASES +# Montmorillonite(MgMg) +# Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + # log_k 2.73 +# Montmorillonite(MgCa) +# Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + # log_k 2.83 + +# # The divalent cations can be defined with the Gaines-Thomas convention... +# EXCHANGE_SPECIES +# # undefine the previous set... +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 +# # write the Gaines-Thomas formulas... +# 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # + +# # The default exchanger X can be used, uncomment the follwing lines +# # redefine f_Na in the rate... +# RATES +# Montmorillonite +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end +# # adapt log_k`s of the solids with default exchanger X: +# PHASES +# Montmorillonite(MgK) +# K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 +# Montmorillonite(MgMg) +# Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 + # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 +# Montmorillonite(MgCa) +# Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 + # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 +# # in EXCHANGE 1, comment X_montm_mg, uncomment X... +END + +SOLUTION 1 +pH 7 charge; +Na 1e-5 +K 1e-5 +Mg 1e-5 +Ca 1e-5 +END + +# Give the solution composition for calculating the ininitial exchanger +SOLUTION 99 +pH 7 charge +EQUILIBRIUM_PHASES 1 +# solid solution of the end-members, SI = log10(fraction = 0.25) +Montmorillonite(MgNa) -0.602 1e-2 +Montmorillonite(MgCa) -0.602 1e-2 +Montmorillonite(MgK) -0.602 1e-2 +Montmorillonite(MgMg) -0.602 1e-2 +Kaolinite 0 0 +SAVE solution 99 +END + +# # with Gapon only, initial exchanger can be defined explicitly +EXCHANGE 1 +Na0.34X_montm_mg 1e-2 +Ca0.17X_montm_mg 1e-2 +K0.34X_montm_mg 1e-2 +Mg0.17X_montm_mg 1e-2 +END + +USE solution 1 +EQUILIBRIUM_PHASES 1 +Kaolinite 0 0 +# USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 +EXCHANGE 1 +X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 +# X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 +KINETICS 1 +Montmorillonite +-formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 +-m 4e-2 +-parms 0 2.5e5 1 0.67 +-step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 +-cvode true +INCREMENTAL_REACTIONS true +USER_GRAPH 4 + -headings time Na K Mg Ca + -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" + -axis_scale x_axis auto auto auto auto log + -axis_scale y_axis auto auto auto auto log +1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) +10 GRAPH_X t +12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 +14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 +20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca +30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 +END +USE solution 99; REACTION +USER_GRAPH 4; -connect_simulations false; -headings Solution_99 +1 t = get(1) +10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange diff --git a/mytest/albite_rates.inc b/mytest/albite_rates.inc new file mode 100644 index 000000000..2be03d3cb --- /dev/null +++ b/mytest/albite_rates.inc @@ -0,0 +1,176 @@ + + +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -0 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -5.0000e-01 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -2 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -2.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -3 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -3.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -4 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -4.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -5 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -5.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -6 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -6.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -7 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -7.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -8 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -8.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -9 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -9.5000e+00 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -10 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1.0500e+01 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -11 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1.1500e+01 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -12 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1.2500e+01 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -13 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -1.3500e+01 LiOH 10 +USE kinetics 1 +END +USE solution 1 +EQUILIBRIUM_PHASES 1 + LiBr + Fix_pH -14 LiOH 10 +USE kinetics 1 +END diff --git a/mytest/albite_rates.out b/mytest/albite_rates.out new file mode 100644 index 000000000..afff13cb1 --- /dev/null +++ b/mytest/albite_rates.out @@ -0,0 +1,172 @@ + Input file: albite_rates + Output file: albite_rates.out +Database file: ../database/phreeqc_rates.dat + +------------------ +Reading data base. +------------------ + + SOLUTION_MASTER_SPECIES + SOLUTION_SPECIES + PHASES + EXCHANGE_MASTER_SPECIES + EXCHANGE_SPECIES + SURFACE_MASTER_SPECIES + SURFACE_SPECIES + MEAN_GAMMAS + RATES + PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals + RATE_PARAMETERS_PK + RATE_PARAMETERS_SVD + RATE_PARAMETERS_HERMANSKA + RATES + END +------------------------------------ +Reading input data for simulation 1. +------------------------------------ + + DATABASE ../database/phreeqc_rates.dat + SELECTED_OUTPUT 101 + file albite_rates_101.sel + USER_PUNCH 101 + headings Mu SC + start + 10 PUNCH STR_F$(MU, 20, 12) + 20 PUNCH STR_F$(SC, 20, 10) + end + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 2. +------------------------------------ + + KINETICS 1 + Albite_PK + formula NaAlSi3O8 + parms 0 1 1 0.67 + m0 1 + time_steps 1 # default + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 3. +------------------------------------ + + SOLUTION 1 + PHASES + Fix_pH + H+ = H+ + LiBr + LiBr = Li+ + Br- + log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant + SELECTED_OUTPUT 1 + file albite_rates.inc + reset false + USER_PUNCH 1 # write out the pH's to equilibrate... + 10 FOR i = 0 to 14 STEP 0.5 + 20 punch EOL$ + 'USE solution 1' + 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + 40 punch EOL$ + ' LiBr' + 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + 60 punch EOL$ + 'USE kinetics 1' + 70 punch EOL$ + 'END' + 80 NEXT i + END +------------------------------------------- +Beginning of initial solution calculations. +------------------------------------------- + +Initial solution 1. + +WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Pure water + +----------------------------Description of solution---------------------------- + + pH = 7.000 + pe = 4.000 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.007e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.217e-09 + Temperature (°C) = 25.00 + Electrical balance (eq) = -1.217e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 + H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 0.000 0.000 18.07 +H(0) 1.416e-25 + H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Fix_pH -7.00 -7.00 0.00 H+ + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.50 0.00 1.50 H2O + O2(g) -39.19 -42.08 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 4. +------------------------------------ + + PRINT + reset false + + Reading data from albite_rates.inc ... + + Reading data from albite_rates.inc ... + + Reading data from albite_rates.inc ... + + Reading data from albite_rates.inc ... +WARNING: Unknown input, no keyword has been specified. +WARNING: Unknown input, no keyword has been specified. +WARNING: Unknown input, no keyword has been specified. +WARNING: Unknown input, no keyword has been specified. +WARNING: Unknown input, no keyword has been specified. +WARNING: Unknown input, no keyword has been specified. +WARNING: Element Al is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element Si is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element in phase, Kaolinite, is not in model. +WARNING: Element in phase, Kaolinite, is not in model. +WARNING: Element Al is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element Si is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. diff --git a/mytest/albite_rates_101.sel b/mytest/albite_rates_101.sel new file mode 100644 index 000000000..069b418d9 --- /dev/null +++ b/mytest/albite_rates_101.sel @@ -0,0 +1,275 @@ + Mu SC + 0.000000100661 0.0546997340 + 1.360612168973 467946.6937258441 + 0.410098469539 157258.3044367340 + 0.122379599362 48875.3872730299 + 0.036497908638 14865.2022953133 + 0.010985261137 4529.2244549578 + 0.003351280635 1393.7289200795 + 0.001035104293 433.1000333767 + 0.000322626396 135.5346580833 + 0.000101154267 42.6015987479 + 0.000031830159 13.4255789848 + 0.000010037547 4.2374452015 + 0.000003169474 1.3389385683 + 0.000001001783 0.4243197012 + 0.000000317046 0.1377055630 + 0.000000100747 0.0547028679 + 0.000000319678 0.0850530726 + 0.000001012748 0.2412972479 + 0.000003206845 0.7547484625 + 0.000010158796 2.3863118383 + 0.000032219309 7.5581501767 + 0.000102410981 23.9721573765 + 0.000326794816 76.2045279692 + 0.001049942328 243.1823877985 + 0.003412857909 781.0303065704 + 0.011308623011 2533.5480784265 + 0.038583758674 8327.9875435911 + 0.136622749455 27658.3300569213 + 0.497107323763 90406.0338296276 + 1.763786045372 270844.3649928398 + 1.360612170325 467946.6935717677 + 0.410098470223 157258.3043719739 + 0.122379599697 48875.3872466738 + 0.036497908793 14865.2022845313 + 0.010985261203 4529.2244505966 + 0.003351280659 1393.7289185201 + 0.001035104299 433.1000330383 + 0.000322626394 135.5346582082 + 0.000101154263 42.6015989618 + 0.000031830156 13.4255791080 + 0.000010037546 4.2374452067 + 0.000003169474 1.3389385584 + 0.000001001784 0.4243197186 + 0.000000317047 0.1377055863 + 0.000000100747 0.0547028844 + 0.000000319678 0.0850530760 + 0.000001012747 0.2412972166 + 0.000003206844 0.7547483565 + 0.000010158793 2.3863115694 + 0.000032219299 7.5581495163 + 0.000102410953 23.9721557933 + 0.000326794751 76.2045245583 + 0.001049942199 243.1823811660 + 0.003412857662 781.0302942724 + 0.011308622525 2533.5480556306 + 0.038583757595 8327.9874994524 + 0.136622746846 27658.3299718310 + 0.497107318241 90406.0337144223 + 1.763786035515 270844.3649754958 + 1.360612170985 467946.6934965207 + 0.410098470589 157258.3043372547 + 0.122379599901 48875.3872306349 + 0.036497908906 14865.2022766941 + 0.010985261265 4529.2244464711 + 0.003351280693 1393.7289162437 + 0.001035104318 433.1000317634 + 0.000322626405 135.5346575001 + 0.000101154269 42.6015985883 + 0.000031830159 13.4255789515 + 0.000010037548 4.2374451988 + 0.000003169475 1.3389386129 + 0.000001001784 0.4243197801 + 0.000000317047 0.1377056379 + 0.000000100747 0.0547029342 + 0.000000319679 0.0850531443 + 0.000001012748 0.2412973148 + 0.000003206845 0.7547485008 + 0.000010158796 2.3863117944 + 0.000032219305 7.5581499023 + 0.000102410965 23.9721564810 + 0.000326794773 76.2045256982 + 0.001049942233 243.1823829066 + 0.003412857714 781.0302968398 + 0.011308622606 2533.5480594480 + 0.038583757740 8327.9875054147 + 0.136622747131 27658.3299811332 + 0.497107318730 90406.0337247506 + 1.763786036215 270844.3649768168 + 1.360612168860 467946.6937388044 + 0.410098469481 157258.3044422624 + 0.122379599340 48875.3872747687 + 0.036497908640 14865.2022951989 + 0.010985261154 4529.2244538355 + 0.003351280662 1393.7289183136 + 0.001035104327 433.1000311804 + 0.000322626433 135.5346556459 + 0.000101154306 42.6015963554 + 0.000031830197 13.4255772645 + 0.000010037578 4.2374450705 + 0.000003169495 1.3389397023 + 0.000001001798 0.4243210134 + 0.000000317057 0.1377065412 + 0.000000100755 0.0547036485 + 0.000000319688 0.0850539411 + 0.000001012759 0.2412982570 + 0.000003206860 0.7547496682 + 0.000010158817 2.3863133773 + 0.000032219343 7.5581523292 + 0.000102411036 23.9721604421 + 0.000326794890 76.2045318401 + 0.001049942407 243.1823918288 + 0.003412857969 781.0303095243 + 0.011308622998 2533.5480778115 + 0.038583758429 8327.9875335549 + 0.136622748493 27658.3300259069 + 0.497107320996 90406.0337726421 + 1.763786039499 270844.3649824787 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000000100645 0.0546913855 + 0.000006940132 2.7156734710 + 0.000045001402 3.3356039561 + 0.000286424928 19.3411178703 + 0.000432906104 31.0420183499 + 0.000486143817 35.5095051484 + 0.000501052000 36.7395522608 + 0.000504993293 37.0633631199 + 0.000506022456 37.1478254746 + 0.000506290178 37.1697909416 + 0.000506359754 37.1754988708 + 0.000506384778 37.1775518296 + 0.000506384778 37.1775518322 + 0.000034160599 2.6948047964 + 0.000194228467 13.1707028540 + 0.000325320799 22.0069419044 + 0.000418394423 29.8016261149 + 0.000462968264 33.5798976778 + 0.000484789864 35.3973719728 + 0.000495609524 36.2914723218 + 0.000501000397 36.7353087467 + 0.000503692229 36.9565314100 + 0.000505037726 37.0670101921 + 0.000505710603 37.1222357559 + 0.000021994538 8.5986704374 + 0.000177177963 12.7000646690 + 0.001274189281 84.0755358277 + 0.001996835533 130.4480264686 + 0.002467410241 160.3757403612 + 0.002755004836 178.5970515839 + 0.002912013555 188.5446649939 + 0.002985270191 193.1961780633 + 0.003014837936 195.0777214229 + 0.003025770144 195.7742371552 + 0.003029656323 196.0219604794 + 0.003031017071 196.1087173984 + 0.000090827873 7.6050164326 + 0.000412411019 27.9519955647 + 0.000639785697 42.8426536138 + 0.000840338214 55.9351879465 + 0.001025243617 67.9589237559 + 0.001198771137 79.2014071121 + 0.001362994082 89.8057914674 + 0.001519031296 99.8515467325 + 0.001667504045 109.3846367512 + 0.001808738076 118.4310207530 + 0.001942863843 127.0034208957 + 0.000000100644 0.0547821292 + 0.000000101193 0.0548655725 + 0.000000106321 0.0556983504 + 0.000000110882 0.0565126045 + 0.000000114963 0.0572932358 + 0.000000118636 0.0580331058 + 0.000000121954 0.0587294107 + 0.000000124963 0.0593817608 + 0.000000127699 0.0599911168 + 0.000000130194 0.0605591809 + 0.000000132473 0.0610880397 + 0.000000134560 0.0615799507 + 0.000000108924 0.0561550723 + 0.000000144963 0.0641329833 + 0.000000154826 0.0666851511 + 0.000000158117 0.0675610407 + 0.000000159270 0.0678704737 + 0.000000159680 0.0679808832 + 0.000000159827 0.0680204175 + 0.000000159880 0.0680345914 + 0.000000159899 0.0680396753 + 0.000000159907 0.0680419702 + 0.000000159909 0.0680424134 + 0.000000104628 0.0554130707 + 0.000000129499 0.0603998624 + 0.000000141703 0.0633161067 + 0.000000148606 0.0650620595 + 0.000000152756 0.0661400546 + 0.000000155332 0.0668189521 + 0.000000156960 0.0672518396 + 0.000000158002 0.0675300299 + 0.000000158672 0.0677096985 + 0.000000159105 0.0678261087 + 0.000000159386 0.0679016884 + 0.000000100914 0.0548231482 + 0.000000103532 0.0552338256 + 0.000000105998 0.0556431723 + 0.000000108325 0.0560481520 + 0.000000110525 0.0564466046 + 0.000000112607 0.0568370052 + 0.000000114581 0.0572182947 + 0.000000116455 0.0575897590 + 0.000000118236 0.0579509409 + 0.000000119929 0.0583015762 + 0.000000121542 0.0586415453 + 0.030000116639 3396.0891259440 + 0.030000127222 3396.0885356208 + 0.030000198439 3396.0848634137 + 0.030000236597 3396.0828629780 + 0.030000259095 3396.0816307488 + 0.030000272924 3396.0808502624 + 0.030000281616 3396.0803502685 + 0.030000287149 3396.0800280725 + 0.030000290699 3396.0798197419 + 0.030000292988 3396.0796847568 + 0.030000294468 3396.0795971817 + 0.030000295427 3396.0795403183 + 0.030000146351 3396.0875205274 + 0.030000269442 3396.0810484772 + 0.030000291879 3396.0797502522 + 0.030000296176 3396.0794958553 + 0.030000297002 3396.0794467245 + 0.030000297164 3396.0794371026 + 0.030000297196 3396.0794352190 + 0.030000297205 3396.0794346536 + 0.030000297205 3396.0794346536 + 0.030000297205 3396.0794346536 + 0.030000297205 3396.0794346536 + 0.000000155027 0.0510773043 + 0.000000100644 0.0547821292 + 0.000134412912 11.2965252435 + 0.000134412912 11.2965252435 + 0.000000144292 0.0563872145 + 0.000000174724 0.0591557826 + 0.000000492366 0.0911384609 + 0.000003228275 0.4496355181 + 0.000010309551 1.4981620851 + 0.000018353005 2.5357654995 + 0.000031356994 3.9564208081 + 0.000044867506 5.2164659995 + 0.000058332023 6.3299938835 + 0.000071215301 7.3021355046 + 0.000104690885 9.5468496910 + 0.000121149482 10.5482467076 + 0.000127138540 10.9002954908 + 0.000129798971 11.0548063430 + 0.000129868897 11.0588524875 + 0.000129865485 11.0586550945 + 0.000129865458 11.0586535199 + 0.000134412912 11.2965252435 diff --git a/mytest/kin_r b/mytest/kin_r new file mode 100644 index 000000000..4bfdbec44 --- /dev/null +++ b/mytest/kin_r @@ -0,0 +1,149 @@ +DATABASE ../database/phreeqc.dat +SELECTED_OUTPUT 101 + -file kin_r_101.sel +USER_PUNCH 101 + -headings Mu SC + -start +10 PUNCH STR_F$(MU, 20, 12) +20 PUNCH STR_F$(SC, 20, 10) + -end +END +RATE_PARAMETERS_HERMANSKA +# Acid mechanism Neutral mechanism Basic mechanism +# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # also valid for +# ================================================================================================================================ +Montmorillonite(MgNa) -11.7 1.66E-03 50.8 0.55 -14.3 9.00e-20 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite + +KNOBS; -diag true + +PHASES +Montmorillonite(MgNa) +Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4H4SiO4 + log_k 3.411 +Montmorillonite(MgK) +K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + log_k 2.830 +Montmorillonite(MgMg) +Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + log_k 3.708 +Montmorillonite(MgCa) +Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + log_k 4.222 + +EXCHANGE_MASTER_SPECIES +X_montm_mg X_montm_mg-0.34 +EXCHANGE_SPECIES +# The Gapon formulation is easiest... + X_montm_mg-0.34 = X_montm_mg-0.34 +0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.830 # 0.581 # +0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # + +# # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73 +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 +# PHASES +# Montmorillonite(MgMg) +# Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + # log_k 2.73 +# Montmorillonite(MgCa) +# Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + # log_k 2.83 + +# Gaines-Thomas... +# EXCHANGE_SPECIES + # X_montm_mg-0.34 = X_montm_mg-0.34 +# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg ; log_k -3.411 # 0 # +# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg ; log_k -2.830 # 0.581 # +# 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # + +RATES +Montmorillonite(MgNa) +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) +# 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +20 rate = RATE_HERMANSKA("Montmorillonite(MgNa)") / f_Na +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +# with default exchanger X: +# PHASES +# Montmorillonite(MgK) +# K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 +# Montmorillonite(MgMg) +# Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 + # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 +# Montmorillonite(MgCa) +# Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 + # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 +END + +SOLUTION 1 +pH 7 charge; +Na 1e-5 +K 1e-5 +Mg 1e-5 +Ca 1e-5 +END + +# initial exchanger +SOLUTION 99 +pH 7 charge +EQUILIBRIUM_PHASES 1 +Montmorillonite(MgNa) -0.602 1e-2 +Montmorillonite(MgCa) -0.602 1e-2 +Montmorillonite(MgK) -0.602 1e-2 +Montmorillonite(MgMg) -0.602 1e-2 +Kaolinite 0 0 +SAVE solution 99 +END + +# # with Gapon only, define exchanger explicitly +EXCHANGE 1 +Na0.34X_montm_mg 1e-2 +Ca0.17X_montm_mg 1e-2 +K0.34X_montm_mg 1e-2 +Mg0.17X_montm_mg 1e-2 +END + +USE solution 1 +EQUILIBRIUM_PHASES 1 +Kaolinite 0 0 +# USE EXCHANGE 1 # uncomment in KINETICS: # X_montm_mg -1 +EXCHANGE 1 +X_montm_mg Montmorillonite(MgNa) kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 +# X Montmorillonite(MgNa) kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 +KINETICS 1 +Montmorillonite(MgNa) +-formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 +-m 4e-2 +-parms 0 2.5e5 1 0.67 +-step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6# 3e6 3e6 1e7 1e8 1e9 +# -step 10*1e7 9*1e8 +-cvode true +INCREMENTAL_REACTIONS true +USER_GRAPH 4 + -headings time Na K Mg Ca + -axis_titles "Time / days" "Molality" "" + -axis_scale x_axis auto auto auto auto log + -axis_scale y_axis auto auto auto auto log +1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) +10 GRAPH_X t +12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 +14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 +20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca +END +USE solution 99; REACTION +USER_GRAPH 4; -connect_simulations false +1 t = get(1) +10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange + + diff --git a/mytest/kin_r.out b/mytest/kin_r.out new file mode 100644 index 000000000..ee077afa6 --- /dev/null +++ b/mytest/kin_r.out @@ -0,0 +1,2784 @@ + Input file: kin_r + Output file: kin_r.out +Database file: ../database/phreeqc.dat + +------------------ +Reading data base. +------------------ + + SOLUTION_MASTER_SPECIES + SOLUTION_SPECIES + PHASES + EXCHANGE_MASTER_SPECIES + EXCHANGE_SPECIES + SURFACE_MASTER_SPECIES + SURFACE_SPECIES + MEAN_GAMMAS + RATES + END +------------------------------------ +Reading input data for simulation 1. +------------------------------------ + + DATABASE ../database/phreeqc.dat + SELECTED_OUTPUT 101 + file kin_r_101.sel + USER_PUNCH 101 + headings Mu SC + start + 10 PUNCH STR_F$(MU, 20, 12) + 20 PUNCH STR_F$(SC, 20, 10) + end + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 2. +------------------------------------ + + RATE_PARAMETERS_HERMANSKA + Montmorillonite(MgNa) -11.7 1.66E-03 50.8 0.55 -14.3 9.00e-20 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite + KNOBS + diagonal_scale true + PHASES + Montmorillonite(MgNa) + Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4H4SiO4 + log_k 3.411 + Montmorillonite(MgK) + K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + log_k 2.830 + Montmorillonite(MgMg) + Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + log_k 3.708 + Montmorillonite(MgCa) + Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + log_k 4.222 + EXCHANGE_MASTER_SPECIES + X_montm_mg X_montm_mg-0.34 + EXCHANGE_SPECIES + X_montm_mg-0.34 = X_montm_mg-0.34 + 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg + log_k -3.411 # 0 # + 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg + log_k -2.830 # 0.581 # + 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg + log_k -3.708 # -0.297 # + 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg + log_k -4.222 # -0.811 # + RATES + Montmorillonite(MgNa) + 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent + 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) + 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na + 20 rate = RATE_HERMANSKA("Montmorillonite(MgNa)") / f_Na + 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 + 40 SAVE area * rate * affinity * TIME + end + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 3. +------------------------------------ + + SOLUTION 1 + pH 7 charge + Na 1e-5 + K 1e-5 + Mg 1e-5 + Ca 1e-5 + END +------------------------------------------- +Beginning of initial solution calculations. +------------------------------------------- + +Initial solution 1. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Ca 1.000e-08 1.000e-08 + K 1.000e-08 1.000e-08 + Mg 1.000e-08 1.000e-08 + Na 1.000e-08 1.000e-08 + +----------------------------Description of solution---------------------------- + + pH = 7.125 Charge balance + pe = 4.000 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.550e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 6.000e-08 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.341e-19 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.350e-07 1.350e-07 -6.870 -6.870 -0.000 -4.14 + H+ 7.503e-08 7.499e-08 -7.125 -7.125 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Ca 1.000e-08 + Ca+2 1.000e-08 9.982e-09 -8.000 -8.001 -0.001 -18.25 + CaOH+ 2.210e-14 2.209e-14 -13.656 -13.656 -0.000 (0) +H(0) 7.963e-26 + H2 3.982e-26 3.982e-26 -25.400 -25.400 0.000 28.61 +K 1.000e-08 + K+ 1.000e-08 9.995e-09 -8.000 -8.000 -0.000 8.98 +Mg 1.000e-08 + Mg+2 1.000e-08 9.981e-09 -8.000 -8.001 -0.001 -21.94 + MgOH+ 4.834e-13 4.832e-13 -12.316 -12.316 -0.000 (0) +Na 1.000e-08 + Na+ 1.000e-08 9.995e-09 -8.000 -8.000 -0.000 -1.52 + NaOH 1.349e-25 1.349e-25 -24.870 -24.870 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -41.580 -41.580 0.000 30.40 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + H2(g) -22.30 -25.40 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + O2(g) -38.69 -41.58 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 4. +------------------------------------ + + SOLUTION 99 + pH 7 charge + EQUILIBRIUM_PHASES 1 + Montmorillonite(MgNa) -0.602 1e-2 + Montmorillonite(MgCa) -0.602 1e-2 + Montmorillonite(MgK) -0.602 1e-2 + Montmorillonite(MgMg) -0.602 1e-2 + Kaolinite 0 0 + SAVE solution 99 + END +------------------------------------------- +Beginning of initial solution calculations. +------------------------------------------- + +Initial solution 99. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Pure water + +----------------------------Description of solution---------------------------- + + pH = 6.997 Charge balance + pe = 4.000 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.006e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 3.040e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.040e-17 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.006e-07 1.006e-07 -6.997 -6.997 -0.000 -4.14 + H+ 1.006e-07 1.006e-07 -6.997 -6.997 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +H(0) 1.433e-25 + H2 7.166e-26 7.166e-26 -25.145 -25.145 0.000 28.61 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.090 -42.090 0.000 30.40 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + H2(g) -22.04 -25.14 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + O2(g) -39.20 -42.09 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +----------------------------------------- +Beginning of batch-reaction calculations. +----------------------------------------- + +Reaction step 1. + +Using solution 99. +Using pure phase assemblage 1. + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -0.00 7.43 7.43 0.000e+00 7.865e-05 7.865e-05 +Montmorillonite(MgCa) -0.60 3.62 4.22 1.000e-02 9.786e-03 -2.142e-04 +Montmorillonite(MgK) -0.60 2.23 2.83 1.000e-02 9.999e-03 -1.410e-06 +Montmorillonite(MgMg) -0.60 3.11 3.71 1.000e-02 1.019e-02 1.917e-04 +Montmorillonite(MgNa) -0.60 2.81 3.41 1.000e-02 9.928e-03 -7.211e-05 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.014e-06 2.014e-06 + Ca 3.641e-05 3.641e-05 + K 4.794e-07 4.794e-07 + Mg 3.481e-08 3.481e-08 + Na 2.452e-05 2.452e-05 + Si 2.266e-04 2.266e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.449 Charge balance + pe = 8.597 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 11 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89011 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.343e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.039e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -5.480e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 17 + Total H = 1.110123e+02 + Total O = 5.550666e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.883e-05 2.844e-05 -4.540 -4.546 -0.006 -4.13 + H+ 3.606e-10 3.559e-10 -9.443 -9.449 -0.006 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.014e-06 + Al(OH)4- 2.013e-06 1.987e-06 -5.696 -5.702 -0.006 (0) + Al(OH)3 3.751e-10 3.751e-10 -9.426 -9.426 0.000 (0) + Al(OH)2+ 9.181e-13 9.059e-13 -12.037 -12.043 -0.006 (0) + AlOH+2 4.339e-17 4.113e-17 -16.363 -16.386 -0.023 -27.83 + Al+3 1.659e-21 1.474e-21 -20.780 -20.832 -0.051 -42.44 +Ca 3.641e-05 + Ca+2 3.640e-05 3.451e-05 -4.439 -4.462 -0.023 -18.21 + CaOH+ 1.631e-08 1.609e-08 -7.788 -7.793 -0.006 (0) +H(0) 1.148e-39 + H2 5.739e-40 5.739e-40 -39.241 -39.241 0.000 28.61 +K 4.794e-07 + K+ 4.794e-07 4.730e-07 -6.319 -6.325 -0.006 8.99 +Mg 3.481e-08 + Mg+2 3.447e-08 3.269e-08 -7.463 -7.486 -0.023 -21.89 + MgOH+ 3.379e-10 3.335e-10 -9.471 -9.477 -0.006 (0) +Na 2.452e-05 + Na+ 2.452e-05 2.419e-05 -4.611 -4.616 -0.006 -1.51 + NaOH 6.880e-20 6.880e-20 -19.162 -19.162 0.000 (0) +O(0) 2.531e-14 + O2 1.265e-14 1.265e-14 -13.898 -13.898 0.000 30.40 +Si 2.266e-04 + H4SiO4 1.596e-04 1.596e-04 -3.797 -3.797 0.000 52.08 + H3SiO4- 6.701e-05 6.612e-05 -4.174 -4.180 -0.006 27.95 + H2SiO4-2 1.333e-08 1.264e-08 -7.875 -7.898 -0.023 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.29 7.51 10.80 Al(OH)3 + Albite -3.71 -21.71 -18.00 NaAlSi3O8 + Anorthite -3.75 -23.46 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.83 -46.85 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.25 -3.80 -3.55 SiO2 + Chlorite(14A) -7.68 60.70 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.56 26.64 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.60 7.51 8.11 Al(OH)3 + H2(g) -36.14 -39.24 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.14 -43.41 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -2.85 -23.42 -20.57 KAlSi3O8 + K-mica 1.57 14.28 12.70 KAl3Si3O10(OH)2 + Kaolinite -0.00 7.43 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.60 3.62 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.60 2.23 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.60 3.11 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.60 2.81 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -11.01 -13.90 -2.89 O2 + Quartz 0.18 -3.80 -3.98 SiO2 + Sepiolite -4.33 11.43 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.23 11.43 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.09 -3.80 -2.71 SiO2 + Talc -2.35 19.05 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 5. +------------------------------------ + + EXCHANGE 1 + Na0.34X_montm_mg 1e-2 + Ca0.17X_montm_mg 1e-2 + K0.34X_montm_mg 1e-2 + Mg0.17X_montm_mg 1e-2 + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 6. +------------------------------------ + + USE solution 1 + EQUILIBRIUM_PHASES 1 + Kaolinite 0 0 + EXCHANGE 1 + X_montm_mg Montmorillonite(MgNa) kin 1 + equilibrate 99 # comment in KINETICS: # X_montm_mg -1 + KINETICS 1 + Montmorillonite(MgNa) + formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 + m 4e-2 + parms 0 2.5e5 1 0.67 + steps 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6# 3e6 3e6 1e7 1e8 1e9 + cvode true + INCREMENTAL_REACTIONS true + USER_GRAPH 4 + -headings time Na K Mg Ca + -axis_titles "Time / days" "Molality" "" + -axis_scale x_axis auto auto auto auto log + -axis_scale y_axis auto auto auto auto log + 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) + 10 GRAPH_X t + 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 + 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 + 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca + END +------------------------------------------------------- +Beginning of initial exchange-composition calculations. +------------------------------------------------------- + +Exchange 1. + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Na0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + +----------------------------------------- +Beginning of batch-reaction calculations. +----------------------------------------- + +Reaction step 1. + +WARNING: Element Al is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element Si is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element in phase, Kaolinite, is not in model. +WARNING: Element in phase, Kaolinite, is not in model. +WARNING: Element Al is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +WARNING: Element Si is contained in Kaolinite (which has 0.0 mass), +but is not in solution or other phases. +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 30 seconds (Incremented time: 30 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.263e-09 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -10.35 -2.92 7.43 0.000e+00 0 0.000e+00 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Na0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.097e-09 2.097e-09 + Ca 2.104e-10 2.104e-10 + K 1.167e-09 1.167e-09 + Mg 1.993e-13 1.993e-13 + Na 5.970e-08 5.970e-08 + Si 5.054e-09 5.054e-09 + +----------------------------Description of solution---------------------------- + + pH = 7.124 Charge balance + pe = 10.730 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.368e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 6.758e-08 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.811e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 11 (37 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.346e-07 1.345e-07 -6.871 -6.871 -0.000 -4.14 + H+ 7.526e-08 7.523e-08 -7.123 -7.124 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.097e-09 + Al(OH)4- 1.978e-09 1.977e-09 -8.704 -8.704 -0.000 (0) + Al(OH)3 7.891e-11 7.891e-11 -10.103 -10.103 0.000 (0) + Al(OH)2+ 4.031e-11 4.029e-11 -10.395 -10.395 -0.000 (0) + AlOH+2 3.874e-13 3.867e-13 -12.412 -12.413 -0.001 -27.87 + Al+3 2.940e-15 2.929e-15 -14.532 -14.533 -0.002 -42.53 +Ca 2.104e-10 + Ca+2 2.104e-10 2.100e-10 -9.677 -9.678 -0.001 -18.25 + CaOH+ 4.635e-16 4.633e-16 -15.334 -15.334 -0.000 (0) +H(0) 2.774e-39 + H2 1.387e-39 1.387e-39 -38.858 -38.858 0.000 28.61 +K 1.167e-09 + K+ 1.167e-09 1.167e-09 -8.933 -8.933 -0.000 8.98 +Mg 1.993e-13 + Mg+2 1.993e-13 1.989e-13 -12.701 -12.701 -0.001 -21.94 + MgOH+ 9.605e-18 9.601e-18 -17.018 -17.018 -0.000 (0) +Na 5.970e-08 + Na+ 5.970e-08 5.967e-08 -7.224 -7.224 -0.000 -1.52 + NaOH 8.029e-25 8.029e-25 -24.095 -24.095 0.000 (0) +O(0) 4.335e-15 + O2 2.168e-15 2.168e-15 -14.664 -14.664 0.000 30.40 +Si 5.054e-09 + H4SiO4 5.044e-09 5.044e-09 -8.297 -8.297 0.000 52.08 + H3SiO4- 9.891e-12 9.887e-12 -11.005 -11.005 -0.000 27.94 + H2SiO4-2 8.955e-18 8.940e-18 -17.048 -17.049 -0.001 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.96 6.84 10.80 Al(OH)3 + Albite -22.82 -40.82 -18.00 NaAlSi3O8 + Anorthite -23.97 -43.68 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -21.55 -66.58 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -4.75 -8.30 -3.55 SiO2 + Chlorite(14A) -71.87 -3.49 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -44.16 -11.96 32.20 Mg3Si2O5(OH)4 + Gibbsite -1.27 6.84 8.11 Al(OH)3 + H2(g) -35.76 -38.86 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -25.88 -66.14 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -21.96 -42.53 -20.57 KAlSi3O8 + K-mica -18.89 -6.19 12.70 KAl3Si3O10(OH)2 + Kaolinite -10.35 -2.92 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -24.76 -20.54 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -24.76 -21.93 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -24.76 -21.05 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -24.76 -21.35 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -11.77 -14.66 -2.89 O2 + Quartz -4.32 -8.30 -3.98 SiO2 + Sepiolite -37.56 -21.80 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -40.46 -21.80 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -5.59 -8.30 -2.71 SiO2 + Talc -49.95 -28.55 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 2. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 100 seconds (Incremented time: 130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -4.207e-09 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -7.80 -0.37 7.43 0.000e+00 0 0.000e+00 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Na0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 9.081e-09 9.081e-09 + Ca 2.406e-10 2.406e-10 + K 1.248e-09 1.248e-09 + Mg 2.279e-13 2.279e-13 + Na 6.385e-08 6.385e-08 + Si 2.188e-08 2.188e-08 + +----------------------------Description of solution---------------------------- + + pH = 7.119 Charge balance + pe = -1.371 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.421e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 9.282e-08 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.811e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 20 (61 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.332e-07 1.332e-07 -6.875 -6.876 -0.000 -4.14 + H+ 7.605e-08 7.601e-08 -7.119 -7.119 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 9.081e-09 + Al(OH)4- 8.556e-09 8.552e-09 -8.068 -8.068 -0.000 (0) + Al(OH)3 3.449e-10 3.449e-10 -9.462 -9.462 0.000 (0) + Al(OH)2+ 1.780e-10 1.780e-10 -9.750 -9.750 -0.000 (0) + AlOH+2 1.729e-12 1.726e-12 -11.762 -11.763 -0.001 -27.87 + Al+3 1.326e-14 1.321e-14 -13.877 -13.879 -0.002 -42.53 +Ca 2.406e-10 + Ca+2 2.406e-10 2.402e-10 -9.619 -9.619 -0.001 -18.25 + CaOH+ 5.246e-16 5.244e-16 -15.280 -15.280 -0.000 (0) +H(0) 4.515e-15 + H2 2.257e-15 2.257e-15 -14.646 -14.646 0.000 28.61 +K 1.248e-09 + K+ 1.248e-09 1.248e-09 -8.904 -8.904 -0.000 8.98 +Mg 2.279e-13 + Mg+2 2.279e-13 2.275e-13 -12.642 -12.643 -0.001 -21.94 + MgOH+ 1.087e-17 1.087e-17 -16.964 -16.964 -0.000 (0) +Na 6.385e-08 + Na+ 6.385e-08 6.382e-08 -7.195 -7.195 -0.000 -1.52 + NaOH 8.498e-25 8.498e-25 -24.071 -24.071 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.087 -63.087 0.000 30.40 +Si 2.188e-08 + H4SiO4 2.184e-08 2.184e-08 -7.661 -7.661 0.000 52.08 + H3SiO4- 4.238e-11 4.236e-11 -10.373 -10.373 -0.000 27.94 + H2SiO4-2 3.798e-17 3.791e-17 -16.420 -16.421 -0.001 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.32 7.48 10.80 Al(OH)3 + Albite -20.24 -38.25 -18.00 NaAlSi3O8 + Anorthite -21.36 -41.08 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -17.71 -62.74 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -4.11 -7.66 -3.55 SiO2 + Chlorite(14A) -68.43 -0.05 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -42.74 -10.54 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.63 7.48 8.11 Al(OH)3 + H2(g) -11.55 -14.65 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -22.15 -62.41 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -19.38 -39.95 -20.57 KAlSi3O8 + K-mica -15.04 -2.33 12.70 KAl3Si3O10(OH)2 + Kaolinite -7.80 -0.37 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -21.12 -16.90 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -21.12 -18.29 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -21.12 -17.42 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -21.12 -17.71 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -60.19 -63.09 -2.89 O2 + Quartz -3.68 -7.66 -3.98 SiO2 + Sepiolite -35.55 -19.79 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -38.45 -19.79 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -4.95 -7.66 -2.71 SiO2 + Talc -47.26 -25.86 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 3. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 1000 seconds (Incremented time: 1130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -4.172e-08 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -3.98 3.46 7.43 0.000e+00 0 0.000e+00 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Na0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 7.834e-08 7.834e-08 + Ca 6.483e-10 6.483e-10 + K 2.049e-09 2.049e-09 + Mg 6.141e-13 6.141e-13 + Na 1.048e-07 1.048e-07 + Si 1.888e-07 1.888e-07 + +----------------------------Description of solution---------------------------- + + pH = 7.076 Charge balance + pe = -1.543 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.948e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 3.431e-07 + Temperature (°C) = 25.00 + Electrical balance (eq) = 7.882e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 22 (54 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.206e-07 1.205e-07 -6.919 -6.919 -0.000 -4.14 + H+ 8.405e-08 8.400e-08 -7.075 -7.076 -0.000 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 7.834e-08 + Al(OH)4- 7.320e-08 7.316e-08 -7.136 -7.136 -0.000 (0) + Al(OH)3 3.261e-09 3.261e-09 -8.487 -8.487 0.000 (0) + Al(OH)2+ 1.860e-09 1.859e-09 -8.731 -8.731 -0.000 (0) + AlOH+2 1.997e-11 1.992e-11 -10.700 -10.701 -0.001 -27.87 + Al+3 1.693e-13 1.685e-13 -12.771 -12.773 -0.002 -42.53 +Ca 6.483e-10 + Ca+2 6.483e-10 6.469e-10 -9.188 -9.189 -0.001 -18.25 + CaOH+ 1.279e-15 1.278e-15 -14.893 -14.893 -0.000 (0) +H(0) 1.216e-14 + H2 6.081e-15 6.081e-15 -14.216 -14.216 0.000 28.61 +K 2.049e-09 + K+ 2.049e-09 2.048e-09 -8.688 -8.689 -0.000 8.98 +Mg 6.141e-13 + Mg+2 6.141e-13 6.128e-13 -12.212 -12.213 -0.001 -21.94 + MgOH+ 2.650e-17 2.649e-17 -16.577 -16.577 -0.000 (0) +Na 1.048e-07 + Na+ 1.048e-07 1.047e-07 -6.980 -6.980 -0.000 -1.52 + NaOH 1.262e-24 1.262e-24 -23.899 -23.899 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.948 -63.948 0.000 30.40 +Si 1.888e-07 + H4SiO4 1.884e-07 1.884e-07 -6.725 -6.725 0.000 52.08 + H3SiO4- 3.309e-10 3.308e-10 -9.480 -9.480 -0.000 27.94 + H2SiO4-2 2.684e-16 2.678e-16 -15.571 -15.572 -0.001 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.35 8.45 10.80 Al(OH)3 + Albite -16.29 -34.29 -18.00 NaAlSi3O8 + Anorthite -17.20 -36.91 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -11.95 -56.97 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -3.17 -6.72 -3.55 SiO2 + Chlorite(14A) -61.95 6.43 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -39.83 -7.63 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.34 8.45 8.11 Al(OH)3 + H2(g) -11.11 -14.22 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -16.44 -56.71 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -15.43 -36.00 -20.57 KAlSi3O8 + K-mica -9.13 3.57 12.70 KAl3Si3O10(OH)2 + Kaolinite -3.98 3.46 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -15.59 -11.36 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -15.59 -12.76 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -15.59 -11.88 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -15.59 -12.17 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -61.06 -63.95 -2.89 O2 + Quartz -2.74 -6.72 -3.98 SiO2 + Sepiolite -32.06 -16.30 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -34.96 -16.30 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -4.01 -6.72 -2.71 SiO2 + Talc -42.48 -21.08 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 4. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 10000 seconds (Incremented time: 11130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -4.126e-07 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -0.00 7.43 7.43 0.000e+00 6.091e-08 6.091e-08 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 -0.000 + Na0.34X_montm_mg 9.999e-03 3.400e-03 2.500e-01 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 6.414e-07 6.414e-07 + Ca 1.425e-08 1.425e-08 + K 9.601e-09 9.601e-09 + Mg 1.350e-11 1.350e-11 + Na 4.909e-07 4.909e-07 + Si 1.717e-06 1.717e-06 + +----------------------------Description of solution---------------------------- + + pH = 6.944 Charge balance + pe = -1.713 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 6.852e-07 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 2.453e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 7.882e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 30 (69 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.138e-07 1.137e-07 -6.944 -6.944 -0.000 0.00 + OH- 8.912e-08 8.904e-08 -7.050 -7.050 -0.000 -4.14 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 6.414e-07 + Al(OH)4- 5.792e-07 5.786e-07 -6.237 -6.238 -0.000 (0) + Al(OH)3 3.490e-08 3.490e-08 -7.457 -7.457 0.000 (0) + Al(OH)2+ 2.695e-08 2.693e-08 -7.569 -7.570 -0.000 (0) + AlOH+2 3.921e-10 3.905e-10 -9.407 -9.408 -0.002 -27.87 + Al+3 4.509e-12 4.469e-12 -11.346 -11.350 -0.004 -42.53 +Ca 1.425e-08 + Ca+2 1.425e-08 1.419e-08 -7.846 -7.848 -0.002 -18.25 + CaOH+ 2.074e-14 2.072e-14 -13.683 -13.684 -0.000 (0) +H(0) 4.878e-14 + H2 2.439e-14 2.439e-14 -13.613 -13.613 0.000 28.61 +K 9.601e-09 + K+ 9.601e-09 9.592e-09 -8.018 -8.018 -0.000 8.98 +Mg 1.350e-11 + Mg+2 1.350e-11 1.345e-11 -10.870 -10.871 -0.002 -21.93 + MgOH+ 4.300e-16 4.296e-16 -15.367 -15.367 -0.000 (0) +Na 4.909e-07 + Na+ 4.909e-07 4.904e-07 -6.309 -6.309 -0.000 -1.52 + NaOH 4.366e-24 4.366e-24 -23.360 -23.360 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.154 -65.154 0.000 30.40 +Si 1.717e-06 + H4SiO4 1.715e-06 1.715e-06 -5.766 -5.766 0.000 52.08 + H3SiO4- 2.227e-09 2.225e-09 -8.652 -8.653 -0.000 27.94 + H2SiO4-2 1.336e-15 1.331e-15 -14.874 -14.876 -0.002 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -1.32 9.48 10.80 Al(OH)3 + Albite -11.84 -29.84 -18.00 NaAlSi3O8 + Anorthite -12.14 -31.85 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -5.85 -50.88 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -2.21 -5.77 -3.55 SiO2 + Chlorite(14A) -51.62 16.76 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -34.68 -2.48 32.20 Mg3Si2O5(OH)4 + Gibbsite 1.37 9.48 8.11 Al(OH)3 + H2(g) -10.51 -13.61 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -10.12 -50.39 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -10.98 -31.55 -20.57 KAlSi3O8 + K-mica -2.62 10.08 12.70 KAl3Si3O10(OH)2 + Kaolinite -0.00 7.43 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -9.49 -5.27 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -9.49 -6.66 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -9.49 -5.78 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -9.49 -6.08 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.26 -65.15 -2.89 O2 + Quartz -1.79 -5.77 -3.98 SiO2 + Sepiolite -27.02 -11.26 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -29.92 -11.26 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -3.05 -5.77 -2.71 SiO2 + Talc -35.41 -14.01 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 5. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 20000 seconds (Incremented time: 31130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -9.013e-07 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 6.091e-08 5.953e-07 5.343e-07 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.000e-02 3.401e-03 2.501e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Na0.34X_montm_mg 9.996e-03 3.399e-03 2.499e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 1.069e-06 1.069e-06 + Ca 9.128e-08 9.128e-08 + K 2.429e-08 2.429e-08 + Mg 8.665e-11 8.665e-11 + Na 1.241e-06 1.241e-06 + Si 4.254e-06 4.254e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.595 Charge balance + pe = -2.392 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.568e-06 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 4.655e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.532e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 32 (80 overall) + Total H = 1.110124e+02 + Total O = 5.550623e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 3.993e-07 3.987e-07 -6.399 -6.399 -0.001 -4.14 + H+ 2.542e-08 2.539e-08 -7.595 -7.595 -0.001 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 1.069e-06 + Al(OH)4- 1.052e-06 1.051e-06 -5.978 -5.979 -0.001 (0) + Al(OH)3 1.415e-08 1.415e-08 -7.849 -7.849 0.000 (0) + Al(OH)2+ 2.442e-09 2.438e-09 -8.612 -8.613 -0.001 (0) + AlOH+2 7.944e-12 7.898e-12 -11.100 -11.102 -0.003 -27.87 + Al+3 2.045e-14 2.018e-14 -13.689 -13.695 -0.006 -42.52 +Ca 9.128e-08 + Ca+2 9.128e-08 9.075e-08 -7.040 -7.042 -0.003 -18.25 + CaOH+ 5.941e-13 5.933e-13 -12.226 -12.227 -0.001 (0) +H(0) 5.557e-14 + H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.61 +K 2.429e-08 + K+ 2.429e-08 2.426e-08 -7.615 -7.615 -0.001 8.98 +Mg 8.665e-11 + Mg+2 8.664e-11 8.613e-11 -10.062 -10.065 -0.003 -21.93 + MgOH+ 1.234e-14 1.232e-14 -13.909 -13.909 -0.001 (0) +Na 1.241e-06 + Na+ 1.241e-06 1.239e-06 -5.906 -5.907 -0.001 -1.52 + NaOH 4.942e-23 4.942e-23 -22.306 -22.306 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.268 -65.268 0.000 30.40 +Si 4.254e-06 + H4SiO4 4.229e-06 4.229e-06 -5.374 -5.374 0.000 52.08 + H3SiO4- 2.460e-08 2.456e-08 -7.609 -7.610 -0.001 27.94 + H2SiO4-2 6.621e-14 6.582e-14 -13.179 -13.182 -0.003 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -1.71 9.09 10.80 Al(OH)3 + Albite -10.00 -28.01 -18.00 NaAlSi3O8 + Anorthite -10.03 -29.75 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -4.98 -50.00 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -1.82 -5.37 -3.55 SiO2 + Chlorite(14A) -40.69 27.69 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -27.57 4.63 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.98 9.09 8.11 Al(OH)3 + H2(g) -10.46 -13.56 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -8.49 -48.76 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -9.14 -29.71 -20.57 KAlSi3O8 + K-mica -1.57 11.13 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -7.50 -3.28 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -7.50 -4.67 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -7.50 -3.79 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -7.50 -4.09 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.38 -65.27 -2.89 O2 + Quartz -1.39 -5.37 -3.98 SiO2 + Sepiolite -21.63 -5.87 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -24.53 -5.87 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -2.66 -5.37 -2.71 SiO2 + Talc -27.52 -6.12 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 6. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 20000 seconds (Incremented time: 51130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.121e-06 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 5.953e-07 1.297e-06 7.022e-07 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.001e-02 3.402e-03 2.501e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 9.999e-03 3.400e-03 2.500e-01 0.000 + Na0.34X_montm_mg 9.994e-03 3.398e-03 2.499e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 1.525e-06 1.525e-06 + Ca 2.497e-07 2.497e-07 + K 4.017e-08 4.017e-08 + Mg 2.375e-10 2.375e-10 + Na 2.051e-06 2.051e-06 + Si 7.331e-06 7.331e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.986 Charge balance + pe = -2.793 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 2.852e-06 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 7.165e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.531e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 39 (93 overall) + Total H = 1.110124e+02 + Total O = 5.550623e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 9.829e-07 9.810e-07 -6.007 -6.008 -0.001 -4.14 + H+ 1.034e-08 1.032e-08 -7.986 -7.986 -0.001 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 1.525e-06 + Al(OH)4- 1.516e-06 1.513e-06 -5.819 -5.820 -0.001 (0) + Al(OH)3 8.281e-09 8.281e-09 -8.082 -8.082 0.000 (0) + Al(OH)2+ 5.810e-10 5.799e-10 -9.236 -9.237 -0.001 (0) + AlOH+2 7.694e-13 7.634e-13 -12.114 -12.117 -0.003 -27.87 + Al+3 8.071e-16 7.929e-16 -15.093 -15.101 -0.008 -42.52 +Ca 2.497e-07 + Ca+2 2.497e-07 2.478e-07 -6.603 -6.606 -0.003 -18.25 + CaOH+ 3.993e-12 3.985e-12 -11.399 -11.400 -0.001 (0) +H(0) 5.808e-14 + H2 2.904e-14 2.904e-14 -13.537 -13.537 0.000 28.61 +K 4.017e-08 + K+ 4.017e-08 4.009e-08 -7.396 -7.397 -0.001 8.98 +Mg 2.375e-10 + Mg+2 2.375e-10 2.356e-10 -9.624 -9.628 -0.003 -21.93 + MgOH+ 8.307e-14 8.290e-14 -13.081 -13.081 -0.001 (0) +Na 2.051e-06 + Na+ 2.051e-06 2.047e-06 -5.688 -5.689 -0.001 -1.52 + NaOH 2.008e-22 2.008e-22 -21.697 -21.697 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.306 -65.306 0.000 30.40 +Si 7.331e-06 + H4SiO4 7.228e-06 7.228e-06 -5.141 -5.141 0.000 52.08 + H3SiO4- 1.035e-07 1.033e-07 -6.985 -6.986 -0.001 27.95 + H2SiO4-2 6.864e-13 6.810e-13 -12.163 -12.167 -0.003 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -1.94 8.86 10.80 Al(OH)3 + Albite -8.93 -26.93 -18.00 NaAlSi3O8 + Anorthite -8.81 -28.53 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -4.46 -49.49 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -1.59 -5.14 -3.55 SiO2 + Chlorite(14A) -34.36 34.02 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -23.45 8.75 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.75 8.86 8.11 Al(OH)3 + H2(g) -10.44 -13.54 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -7.54 -47.81 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -8.07 -28.64 -20.57 KAlSi3O8 + K-mica -0.96 11.74 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -6.33 -2.11 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -6.33 -3.50 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -6.33 -2.62 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -6.33 -2.92 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.41 -65.31 -2.89 O2 + Quartz -1.16 -5.14 -3.98 SiO2 + Sepiolite -18.49 -2.73 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -21.39 -2.73 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -2.43 -5.14 -2.71 SiO2 + Talc -22.93 -1.53 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 7. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 30000 seconds (Incremented time: 81130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -2.088e-06 4.000e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 1.297e-06 2.765e-06 1.468e-06 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 4.000e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.001e-02 3.403e-03 2.503e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 9.996e-03 3.399e-03 2.499e-01 0.000 + Na0.34X_montm_mg 9.990e-03 3.397e-03 2.498e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.054e-06 2.054e-06 + Ca 6.607e-07 6.607e-07 + K 6.534e-08 6.534e-08 + Mg 6.312e-10 6.312e-10 + Na 3.333e-06 3.333e-06 + Si 1.275e-05 1.275e-05 + +----------------------------Description of solution---------------------------- + + pH = 8.349 Charge balance + pe = -3.216 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 5.387e-06 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.088e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.501e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 38 (90 overall) + Total H = 1.110124e+02 + Total O = 5.550625e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.268e-06 2.262e-06 -5.644 -5.645 -0.001 -4.14 + H+ 4.486e-09 4.474e-09 -8.348 -8.349 -0.001 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.054e-06 + Al(OH)4- 2.049e-06 2.044e-06 -5.688 -5.690 -0.001 (0) + Al(OH)3 4.851e-09 4.851e-09 -8.314 -8.314 0.000 (0) + Al(OH)2+ 1.477e-10 1.473e-10 -9.831 -9.832 -0.001 (0) + AlOH+2 8.501e-14 8.409e-14 -13.071 -13.075 -0.005 -27.87 + Al+3 3.881e-17 3.788e-17 -16.411 -16.422 -0.011 -42.51 +Ca 6.607e-07 + Ca+2 6.607e-07 6.536e-07 -6.180 -6.185 -0.005 -18.25 + CaOH+ 2.431e-11 2.424e-11 -10.614 -10.615 -0.001 (0) +H(0) 7.659e-14 + H2 3.829e-14 3.829e-14 -13.417 -13.417 0.000 28.61 +K 6.534e-08 + K+ 6.534e-08 6.516e-08 -7.185 -7.186 -0.001 8.98 +Mg 6.312e-10 + Mg+2 6.307e-10 6.239e-10 -9.200 -9.205 -0.005 -21.93 + MgOH+ 5.076e-13 5.063e-13 -12.294 -12.296 -0.001 (0) +Na 3.333e-06 + Na+ 3.333e-06 3.324e-06 -5.477 -5.478 -0.001 -1.52 + NaOH 7.519e-22 7.519e-22 -21.124 -21.124 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.546 -65.546 0.000 30.40 +Si 1.275e-05 + H4SiO4 1.234e-05 1.234e-05 -4.909 -4.909 0.000 52.08 + H3SiO4- 4.077e-07 4.066e-07 -6.390 -6.391 -0.001 27.95 + H2SiO4-2 6.250e-12 6.182e-12 -11.204 -11.209 -0.005 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.17 8.63 10.80 Al(OH)3 + Albite -7.89 -25.89 -18.00 NaAlSi3O8 + Anorthite -7.67 -27.38 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -3.96 -48.99 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -1.36 -4.91 -3.55 SiO2 + Chlorite(14A) -28.39 39.99 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -19.54 12.66 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.52 8.63 8.11 Al(OH)3 + H2(g) -10.32 -13.42 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -6.63 -46.90 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -7.03 -27.60 -20.57 KAlSi3O8 + K-mica -0.39 12.32 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -5.20 -0.98 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -5.20 -2.37 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -5.20 -1.49 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -5.20 -1.79 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.65 -65.55 -2.89 O2 + Quartz -0.93 -4.91 -3.98 SiO2 + Sepiolite -15.50 0.26 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -18.40 0.26 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -2.20 -4.91 -2.71 SiO2 + Talc -18.55 2.85 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 8. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 30000 seconds (Incremented time: 111130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -2.508e-06 3.999e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -0.00 7.43 7.43 2.765e-06 4.672e-06 1.907e-06 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.999e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.001e-02 3.405e-03 2.504e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.500e-01 0.000 + Ca0.17X_montm_mg 9.993e-03 3.397e-03 2.499e-01 0.000 + Na0.34X_montm_mg 9.986e-03 3.395e-03 2.497e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.405e-06 2.405e-06 + Ca 1.278e-06 1.278e-06 + K 9.089e-08 9.089e-08 + Mg 1.227e-09 1.227e-09 + Na 4.631e-06 4.630e-06 + Si 1.897e-05 1.897e-05 + +----------------------------Description of solution---------------------------- + + pH = 8.581 Charge balance + pe = -3.471 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 8.561e-06 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.449e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -2.746e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 25 (59 overall) + Total H = 1.110124e+02 + Total O = 5.550626e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 3.868e-06 3.855e-06 -5.412 -5.414 -0.001 -4.14 + H+ 2.634e-09 2.625e-09 -8.579 -8.581 -0.001 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.405e-06 + Al(OH)4- 2.401e-06 2.393e-06 -5.620 -5.621 -0.001 (0) + Al(OH)3 3.334e-09 3.334e-09 -8.477 -8.477 0.000 (0) + Al(OH)2+ 5.960e-11 5.940e-11 -10.225 -10.226 -0.001 (0) + AlOH+2 2.017e-14 1.990e-14 -13.695 -13.701 -0.006 -27.86 + Al+3 5.423e-18 5.259e-18 -17.266 -17.279 -0.013 -42.51 +Ca 1.278e-06 + Ca+2 1.278e-06 1.260e-06 -5.894 -5.900 -0.006 -18.24 + CaOH+ 7.993e-11 7.966e-11 -10.097 -10.099 -0.001 (0) +H(0) 8.543e-14 + H2 4.272e-14 4.272e-14 -13.369 -13.369 0.000 28.61 +K 9.089e-08 + K+ 9.089e-08 9.058e-08 -7.041 -7.043 -0.001 8.98 +Mg 1.227e-09 + Mg+2 1.226e-09 1.209e-09 -8.912 -8.918 -0.006 -21.93 + MgOH+ 1.678e-12 1.672e-12 -11.775 -11.777 -0.001 (0) +Na 4.631e-06 + Na+ 4.631e-06 4.615e-06 -5.334 -5.336 -0.001 -1.52 + NaOH 1.779e-21 1.779e-21 -20.750 -20.750 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.641 -65.641 0.000 30.40 +Si 1.897e-05 + H4SiO4 1.795e-05 1.795e-05 -4.746 -4.746 0.000 52.08 + H3SiO4- 1.012e-06 1.008e-06 -5.995 -5.996 -0.001 27.95 + H2SiO4-2 2.649e-11 2.613e-11 -10.577 -10.583 -0.006 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.34 8.46 10.80 Al(OH)3 + Albite -7.19 -25.19 -18.00 NaAlSi3O8 + Anorthite -6.92 -26.63 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -3.62 -48.65 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -1.19 -4.75 -3.55 SiO2 + Chlorite(14A) -24.47 43.91 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -16.96 15.24 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.35 8.46 8.11 Al(OH)3 + H2(g) -10.27 -13.37 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -6.02 -46.29 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -6.33 -26.90 -20.57 KAlSi3O8 + K-mica -0.01 12.69 12.70 KAl3Si3O10(OH)2 + Kaolinite -0.00 7.43 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -4.44 -0.22 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -4.44 -1.61 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -4.44 -0.73 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -4.44 -1.03 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.75 -65.64 -2.89 O2 + Quartz -0.77 -4.75 -3.98 SiO2 + Sepiolite -13.51 2.25 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -16.41 2.25 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -2.03 -4.75 -2.71 SiO2 + Talc -15.65 5.75 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 9. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 30000 seconds (Incremented time: 141130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -2.840e-06 3.999e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 4.672e-06 6.921e-06 2.249e-06 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.999e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.002e-02 3.407e-03 2.506e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.501e-01 0.000 + Ca0.17X_montm_mg 9.988e-03 3.396e-03 2.498e-01 0.000 + Na0.34X_montm_mg 9.983e-03 3.394e-03 2.496e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.621e-06 2.621e-06 + Ca 2.077e-06 2.077e-06 + K 1.160e-07 1.160e-07 + Mg 2.009e-09 2.009e-09 + Na 5.902e-06 5.902e-06 + Si 2.583e-05 2.583e-05 + +----------------------------Description of solution---------------------------- + + pH = 8.742 Charge balance + pe = -3.702 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1 + Density (g/cm³) = 0.99704 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89005 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.226e-05 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.804e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -2.793e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 32 (71 overall) + Total H = 1.110124e+02 + Total O = 5.550627e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 5.608e-06 5.585e-06 -5.251 -5.253 -0.002 -4.14 + H+ 1.820e-09 1.812e-09 -8.740 -8.742 -0.002 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.621e-06 + Al(OH)4- 2.618e-06 2.607e-06 -5.582 -5.584 -0.002 (0) + Al(OH)3 2.507e-09 2.507e-09 -8.601 -8.601 0.000 (0) + Al(OH)2+ 3.096e-11 3.083e-11 -10.509 -10.511 -0.002 (0) + AlOH+2 7.246e-15 7.129e-15 -14.140 -14.147 -0.007 -27.86 + Al+3 1.349e-18 1.301e-18 -17.870 -17.886 -0.016 -42.50 +Ca 2.077e-06 + Ca+2 2.077e-06 2.043e-06 -5.683 -5.690 -0.007 -18.24 + CaOH+ 1.879e-10 1.871e-10 -9.726 -9.728 -0.002 (0) +H(0) 1.179e-13 + H2 5.897e-14 5.897e-14 -13.229 -13.229 0.000 28.61 +K 1.160e-07 + K+ 1.160e-07 1.155e-07 -6.936 -6.937 -0.002 8.98 +Mg 2.009e-09 + Mg+2 2.005e-09 1.972e-09 -8.698 -8.705 -0.007 -21.92 + MgOH+ 3.968e-12 3.951e-12 -11.401 -11.403 -0.002 (0) +Na 5.902e-06 + Na+ 5.902e-06 5.877e-06 -5.229 -5.231 -0.002 -1.52 + NaOH 3.283e-21 3.283e-21 -20.484 -20.484 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.921 -65.921 0.000 30.40 +Si 2.583e-05 + H4SiO4 2.388e-05 2.388e-05 -4.622 -4.622 0.000 52.08 + H3SiO4- 1.951e-06 1.943e-06 -5.710 -5.712 -0.002 27.95 + H2SiO4-2 7.413e-11 7.292e-11 -10.130 -10.137 -0.007 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.46 8.34 10.80 Al(OH)3 + Albite -6.68 -24.68 -18.00 NaAlSi3O8 + Anorthite -6.39 -26.10 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -3.37 -48.40 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -1.07 -4.62 -3.55 SiO2 + Chlorite(14A) -21.67 46.71 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -15.11 17.09 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.23 8.34 8.11 Al(OH)3 + H2(g) -10.13 -13.23 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -5.58 -45.85 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -5.81 -26.39 -20.57 KAlSi3O8 + K-mica 0.25 12.96 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -3.88 0.35 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -3.88 -1.05 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -3.88 -0.17 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -3.88 -0.47 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -63.03 -65.92 -2.89 O2 + Quartz -0.64 -4.62 -3.98 SiO2 + Sepiolite -12.07 3.69 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -14.97 3.69 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.91 -4.62 -2.71 SiO2 + Talc -13.55 7.85 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 10. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 30000 seconds (Incremented time: 171130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -3.108e-06 3.999e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 6.921e-06 9.439e-06 2.518e-06 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.999e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.003e-02 3.409e-03 2.507e-01 0.000 + K0.34X_montm_mg 1.000e-02 3.400e-03 2.501e-01 0.000 + Ca0.17X_montm_mg 9.982e-03 3.394e-03 2.496e-01 0.000 + Na0.34X_montm_mg 9.979e-03 3.393e-03 2.496e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.744e-06 2.744e-06 + Ca 3.034e-06 3.034e-06 + K 1.403e-07 1.403e-07 + Mg 2.956e-09 2.956e-09 + Na 7.132e-06 7.132e-06 + Si 3.322e-05 3.322e-05 + +----------------------------Description of solution---------------------------- + + pH = 8.861 Charge balance + pe = -3.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 2 + Density (g/cm³) = 0.99705 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89005 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.638e-05 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 2.158e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -2.795e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 30 (68 overall) + Total H = 1.110124e+02 + Total O = 5.550629e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 7.380e-06 7.345e-06 -5.132 -5.134 -0.002 -4.13 + H+ 1.385e-09 1.378e-09 -8.859 -8.861 -0.002 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.744e-06 + Al(OH)4- 2.742e-06 2.729e-06 -5.562 -5.564 -0.002 (0) + Al(OH)3 1.995e-09 1.995e-09 -8.700 -8.700 0.000 (0) + Al(OH)2+ 1.875e-11 1.866e-11 -10.727 -10.729 -0.002 (0) + AlOH+2 3.343e-15 3.281e-15 -14.476 -14.484 -0.008 -27.86 + Al+3 4.748e-19 4.552e-19 -18.323 -18.342 -0.018 -42.50 +Ca 3.034e-06 + Ca+2 3.033e-06 2.977e-06 -5.518 -5.526 -0.008 -18.24 + CaOH+ 3.602e-10 3.585e-10 -9.443 -9.446 -0.002 (0) +H(0) 1.241e-13 + H2 6.206e-14 6.206e-14 -13.207 -13.207 0.000 28.61 +K 1.403e-07 + K+ 1.403e-07 1.396e-07 -6.853 -6.855 -0.002 8.98 +Mg 2.956e-09 + Mg+2 2.949e-09 2.893e-09 -8.530 -8.539 -0.008 -21.92 + MgOH+ 7.660e-12 7.624e-12 -11.116 -11.118 -0.002 (0) +Na 7.132e-06 + Na+ 7.132e-06 7.099e-06 -5.147 -5.149 -0.002 -1.52 + NaOH 5.214e-21 5.214e-21 -20.283 -20.283 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.966 -65.966 0.000 30.40 +Si 3.322e-05 + H4SiO4 3.000e-05 3.000e-05 -4.523 -4.523 0.000 52.08 + H3SiO4- 3.225e-06 3.210e-06 -5.491 -5.494 -0.002 27.95 + H2SiO4-2 1.615e-10 1.585e-10 -9.792 -9.800 -0.008 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.56 8.24 10.80 Al(OH)3 + Albite -6.28 -24.28 -18.00 NaAlSi3O8 + Anorthite -5.99 -25.70 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -3.17 -48.20 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.97 -4.52 -3.55 SiO2 + Chlorite(14A) -19.55 48.83 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -13.70 18.50 32.20 Mg3Si2O5(OH)4 + Gibbsite 0.13 8.24 8.11 Al(OH)3 + H2(g) -10.11 -13.21 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -5.24 -45.51 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -5.41 -25.99 -20.57 KAlSi3O8 + K-mica 0.46 13.16 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -3.44 0.78 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -3.44 -0.61 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -3.44 0.27 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -3.44 -0.03 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -63.07 -65.97 -2.89 O2 + Quartz -0.54 -4.52 -3.98 SiO2 + Sepiolite -10.96 4.80 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -13.86 4.80 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.81 -4.52 -2.71 SiO2 + Talc -11.94 9.46 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 11. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 100000 seconds (Incremented time: 271130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.171e-05 3.998e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 9.439e-06 1.913e-05 9.686e-06 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.998e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.005e-02 3.417e-03 2.514e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.501e-01 0.000 + Na0.34X_montm_mg 9.968e-03 3.389e-03 2.494e-01 0.000 + Ca0.17X_montm_mg 9.958e-03 3.386e-03 2.491e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.812e-06 2.812e-06 + Ca 7.075e-06 7.075e-06 + K 2.153e-07 2.153e-07 + Mg 7.101e-09 7.101e-09 + Na 1.091e-05 1.091e-05 + Si 6.069e-05 6.069e-05 + +----------------------------Description of solution---------------------------- + + pH = 9.102 Charge balance + pe = -3.989 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 4 + Density (g/cm³) = 0.99705 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89006 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 3.237e-05 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 3.373e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -2.810e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 45 (103 overall) + Total H = 1.110124e+02 + Total O = 5.550634e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.289e-05 1.280e-05 -4.890 -4.893 -0.003 -4.13 + H+ 7.959e-10 7.907e-10 -9.099 -9.102 -0.003 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.812e-06 + Al(OH)4- 2.810e-06 2.792e-06 -5.551 -5.554 -0.003 (0) + Al(OH)3 1.171e-09 1.171e-09 -8.931 -8.931 0.000 (0) + Al(OH)2+ 6.328e-12 6.286e-12 -11.199 -11.202 -0.003 (0) + AlOH+2 6.512e-16 6.342e-16 -15.186 -15.198 -0.011 -27.85 + Al+3 5.356e-20 5.048e-20 -19.271 -19.297 -0.026 -42.49 +Ca 7.075e-06 + Ca+2 7.074e-06 6.889e-06 -5.150 -5.162 -0.011 -18.23 + CaOH+ 1.455e-09 1.446e-09 -8.837 -8.840 -0.003 (0) +H(0) 8.428e-14 + H2 4.214e-14 4.214e-14 -13.375 -13.375 0.000 28.61 +K 2.153e-07 + K+ 2.153e-07 2.139e-07 -6.667 -6.670 -0.003 8.98 +Mg 7.101e-09 + Mg+2 7.069e-09 6.884e-09 -8.151 -8.162 -0.011 -21.92 + MgOH+ 3.182e-11 3.161e-11 -10.497 -10.500 -0.003 (0) +Na 1.091e-05 + Na+ 1.091e-05 1.084e-05 -4.962 -4.965 -0.003 -1.51 + NaOH 1.387e-20 1.387e-20 -19.858 -19.858 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.629 -65.629 0.000 30.40 +Si 6.069e-05 + H4SiO4 5.110e-05 5.110e-05 -4.292 -4.292 0.000 52.08 + H3SiO4- 9.593e-06 9.529e-06 -5.018 -5.021 -0.003 27.95 + H2SiO4-2 8.417e-10 8.198e-10 -9.075 -9.086 -0.011 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.79 8.01 10.80 Al(OH)3 + Albite -5.39 -23.39 -18.00 NaAlSi3O8 + Anorthite -5.14 -24.85 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -2.72 -47.75 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.74 -4.29 -3.55 SiO2 + Chlorite(14A) -15.03 53.35 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -10.66 21.54 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.10 8.01 8.11 Al(OH)3 + H2(g) -10.27 -13.38 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -4.49 -44.76 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -4.53 -25.10 -20.57 KAlSi3O8 + K-mica 0.88 13.58 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -2.46 1.76 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -2.46 0.37 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -2.46 1.25 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -2.46 0.95 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.74 -65.63 -2.89 O2 + Quartz -0.31 -4.29 -3.98 SiO2 + Sepiolite -8.55 7.21 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -11.45 7.21 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.58 -4.29 -2.71 SiO2 + Talc -8.44 12.96 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 12. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 100000 seconds (Incremented time: 371130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.285e-05 3.996e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -0.00 7.43 7.43 1.913e-05 2.986e-05 1.073e-05 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.996e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.008e-02 3.426e-03 2.521e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.502e-01 0.000 + Na0.34X_montm_mg 9.958e-03 3.386e-03 2.492e-01 0.000 + Ca0.17X_montm_mg 9.930e-03 3.376e-03 2.485e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.681e-06 2.681e-06 + Ca 1.193e-05 1.193e-05 + K 2.815e-07 2.815e-07 + Mg 1.238e-08 1.238e-08 + Na 1.423e-05 1.423e-05 + Si 9.063e-05 9.063e-05 + +----------------------------Description of solution---------------------------- + + pH = 9.231 Charge balance + pe = -3.963 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 5 + Density (g/cm³) = 0.99705 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89007 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 5.034e-05 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 4.644e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.980e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 42 (95 overall) + Total H = 1.110124e+02 + Total O = 5.550640e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 1.739e-05 1.725e-05 -4.760 -4.763 -0.004 -4.13 + H+ 5.917e-10 5.868e-10 -9.228 -9.231 -0.004 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.681e-06 + Al(OH)4- 2.680e-06 2.658e-06 -5.572 -5.575 -0.004 (0) + Al(OH)3 8.277e-10 8.277e-10 -9.082 -9.082 0.000 (0) + Al(OH)2+ 3.324e-12 3.297e-12 -11.478 -11.482 -0.004 (0) + AlOH+2 2.551e-16 2.468e-16 -15.593 -15.608 -0.014 -27.85 + Al+3 1.569e-20 1.458e-20 -19.804 -19.836 -0.032 -42.48 +Ca 1.193e-05 + Ca+2 1.193e-05 1.154e-05 -4.923 -4.938 -0.014 -18.23 + CaOH+ 3.291e-09 3.264e-09 -8.483 -8.486 -0.004 (0) +H(0) 4.108e-14 + H2 2.054e-14 2.054e-14 -13.687 -13.687 0.000 28.61 +K 2.815e-07 + K+ 2.815e-07 2.792e-07 -6.550 -6.554 -0.004 8.99 +Mg 1.238e-08 + Mg+2 1.231e-08 1.191e-08 -7.910 -7.924 -0.014 -21.91 + MgOH+ 7.429e-11 7.368e-11 -10.129 -10.133 -0.004 (0) +Na 1.423e-05 + Na+ 1.423e-05 1.411e-05 -4.847 -4.850 -0.004 -1.51 + NaOH 2.433e-20 2.433e-20 -19.614 -19.614 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.005 -65.005 0.000 30.40 +Si 9.063e-05 + H4SiO4 7.231e-05 7.231e-05 -4.141 -4.141 0.000 52.08 + H3SiO4- 1.832e-05 1.817e-05 -4.737 -4.741 -0.004 27.95 + H2SiO4-2 2.177e-09 2.106e-09 -8.662 -8.677 -0.014 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -2.94 7.86 10.80 Al(OH)3 + Albite -4.85 -22.85 -18.00 NaAlSi3O8 + Anorthite -4.66 -24.37 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -2.44 -47.47 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.59 -4.14 -3.55 SiO2 + Chlorite(14A) -12.39 55.99 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -8.87 23.33 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.25 7.86 8.11 Al(OH)3 + H2(g) -10.59 -13.69 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -4.04 -44.31 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -3.98 -24.55 -20.57 KAlSi3O8 + K-mica 1.13 13.83 12.70 KAl3Si3O10(OH)2 + Kaolinite -0.00 7.43 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -1.86 2.36 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -1.85 0.98 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -1.85 1.86 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -1.86 1.55 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -62.11 -65.01 -2.89 O2 + Quartz -0.16 -4.14 -3.98 SiO2 + Sepiolite -7.10 8.66 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -10.00 8.66 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.43 -4.14 -2.71 SiO2 + Talc -6.35 15.05 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 13. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 100000 seconds (Incremented time: 471130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.285e-05 3.995e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite -0.00 7.43 7.43 2.986e-05 4.060e-05 1.074e-05 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.995e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.010e-02 3.434e-03 2.528e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.503e-01 0.000 + Na0.34X_montm_mg 9.950e-03 3.383e-03 2.491e-01 0.000 + Ca0.17X_montm_mg 9.900e-03 3.366e-03 2.478e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.517e-06 2.517e-06 + Ca 1.702e-05 1.702e-05 + K 3.388e-07 3.388e-07 + Mg 1.827e-08 1.827e-08 + Na 1.708e-05 1.708e-05 + Si 1.205e-04 1.205e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.310 Charge balance + pe = -3.573 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 7 + Density (g/cm³) = 0.99705 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89008 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 6.853e-05 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 5.905e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.973e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 81 (171 overall) + Total H = 1.110124e+02 + Total O = 5.550646e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.087e-05 2.067e-05 -4.680 -4.685 -0.004 -4.13 + H+ 4.943e-10 4.897e-10 -9.306 -9.310 -0.004 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.517e-06 + Al(OH)4- 2.517e-06 2.493e-06 -5.599 -5.603 -0.004 (0) + Al(OH)3 6.476e-10 6.476e-10 -9.189 -9.189 0.000 (0) + Al(OH)2+ 2.173e-12 2.152e-12 -11.663 -11.667 -0.004 (0) + AlOH+2 1.397e-16 1.345e-16 -15.855 -15.871 -0.017 -27.84 + Al+3 7.220e-21 6.629e-21 -20.141 -20.179 -0.037 -42.47 +Ca 1.702e-05 + Ca+2 1.702e-05 1.638e-05 -4.769 -4.786 -0.017 -18.22 + CaOH+ 5.604e-09 5.551e-09 -8.251 -8.256 -0.004 (0) +H(0) 4.762e-15 + H2 2.381e-15 2.381e-15 -14.623 -14.623 0.000 28.61 +K 3.388e-07 + K+ 3.388e-07 3.355e-07 -6.470 -6.474 -0.004 8.99 +Mg 1.827e-08 + Mg+2 1.814e-08 1.746e-08 -7.741 -7.758 -0.017 -21.91 + MgOH+ 1.307e-10 1.295e-10 -9.884 -9.888 -0.004 (0) +Na 1.708e-05 + Na+ 1.708e-05 1.691e-05 -4.768 -4.772 -0.004 -1.51 + NaOH 3.496e-20 3.496e-20 -19.456 -19.456 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.134 -63.134 0.000 30.40 +Si 1.205e-04 + H4SiO4 9.242e-05 9.242e-05 -4.034 -4.034 0.000 52.08 + H3SiO4- 2.810e-05 2.783e-05 -4.551 -4.555 -0.004 27.95 + H2SiO4-2 4.017e-09 3.866e-09 -8.396 -8.413 -0.017 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.05 7.75 10.80 Al(OH)3 + Albite -4.48 -22.48 -18.00 NaAlSi3O8 + Anorthite -4.35 -24.06 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -2.24 -47.27 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.48 -4.03 -3.55 SiO2 + Chlorite(14A) -10.67 57.71 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -7.68 24.52 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.36 7.75 8.11 Al(OH)3 + H2(g) -11.52 -14.62 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.74 -44.00 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -3.61 -24.18 -20.57 KAlSi3O8 + K-mica 1.29 13.99 12.70 KAl3Si3O10(OH)2 + Kaolinite -0.00 7.43 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -1.45 2.78 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -1.44 1.39 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -1.44 2.27 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -1.44 1.97 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -60.24 -63.13 -2.89 O2 + Quartz -0.05 -4.03 -3.98 SiO2 + Sepiolite -6.14 9.62 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -9.04 9.62 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.32 -4.03 -2.71 SiO2 + Talc -4.95 16.45 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 14. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 300000 seconds (Incremented time: 771130 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -2.883e-05 3.992e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 4.060e-05 6.470e-05 2.410e-05 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.992e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.016e-02 3.454e-03 2.545e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.505e-01 0.000 + Na0.34X_montm_mg 9.934e-03 3.377e-03 2.488e-01 0.000 + Ca0.17X_montm_mg 9.830e-03 3.342e-03 2.462e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.179e-06 2.179e-06 + Ca 2.892e-05 2.892e-05 + K 4.497e-07 4.497e-07 + Mg 3.352e-08 3.352e-08 + Na 2.256e-05 2.256e-05 + Si 1.877e-04 1.877e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.412 Charge balance + pe = -3.995 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 9 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89010 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.098e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 8.745e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.241e-13 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 65 (167 overall) + Total H = 1.110123e+02 + Total O = 5.550659e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.647e-05 2.615e-05 -4.577 -4.582 -0.005 -4.13 + H+ 3.917e-10 3.870e-10 -9.407 -9.412 -0.005 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.179e-06 + Al(OH)4- 2.179e-06 2.152e-06 -5.662 -5.667 -0.005 (0) + Al(OH)3 4.420e-10 4.420e-10 -9.355 -9.355 0.000 (0) + Al(OH)2+ 1.175e-12 1.161e-12 -11.930 -11.935 -0.005 (0) + AlOH+2 6.016e-17 5.732e-17 -16.221 -16.242 -0.021 -27.84 + Al+3 2.487e-21 2.233e-21 -20.604 -20.651 -0.047 -42.45 +Ca 2.892e-05 + Ca+2 2.890e-05 2.754e-05 -4.539 -4.560 -0.021 -18.22 + CaOH+ 1.195e-08 1.181e-08 -7.922 -7.928 -0.005 (0) +H(0) 2.075e-14 + H2 1.037e-14 1.037e-14 -13.984 -13.984 0.000 28.61 +K 4.497e-07 + K+ 4.497e-07 4.442e-07 -6.347 -6.352 -0.005 8.99 +Mg 3.352e-08 + Mg+2 3.322e-08 3.165e-08 -7.479 -7.500 -0.021 -21.90 + MgOH+ 3.005e-10 2.969e-10 -9.522 -9.527 -0.005 (0) +Na 2.256e-05 + Na+ 2.256e-05 2.229e-05 -4.647 -4.652 -0.005 -1.51 + NaOH 5.829e-20 5.829e-20 -19.234 -19.234 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.412 -64.412 0.000 30.40 +Si 1.877e-04 + H4SiO4 1.354e-04 1.354e-04 -3.868 -3.868 0.000 52.08 + H3SiO4- 5.223e-05 5.160e-05 -4.282 -4.287 -0.005 27.95 + H2SiO4-2 9.518e-09 9.069e-09 -8.021 -8.042 -0.021 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.21 7.59 10.80 Al(OH)3 + Albite -3.92 -21.92 -18.00 NaAlSi3O8 + Anorthite -3.92 -23.63 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.95 -46.98 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.32 -3.87 -3.55 SiO2 + Chlorite(14A) -8.19 60.19 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.96 26.24 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.52 7.59 8.11 Al(OH)3 + H2(g) -10.88 -13.98 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.29 -43.55 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -3.05 -23.62 -20.57 KAlSi3O8 + K-mica 1.51 14.21 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.83 3.39 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.82 2.01 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.81 2.89 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.82 2.59 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -61.52 -64.41 -2.89 O2 + Quartz 0.11 -3.87 -3.98 SiO2 + Sepiolite -4.71 11.05 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.61 11.05 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.16 -3.87 -2.71 SiO2 + Talc -2.90 18.50 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 15. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 600000 seconds (Incremented time: 1.37113e+06 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -1.318e-05 3.991e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 6.470e-05 7.571e-05 1.101e-05 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.991e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.018e-02 3.463e-03 2.552e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.505e-01 0.000 + Na0.34X_montm_mg 9.927e-03 3.375e-03 2.488e-01 0.000 + Ca0.17X_montm_mg 9.797e-03 3.331e-03 2.455e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.048e-06 2.048e-06 + Ca 3.449e-05 3.449e-05 + K 4.954e-07 4.954e-07 + Mg 4.142e-08 4.142e-08 + Na 2.481e-05 2.481e-05 + Si 2.184e-04 2.184e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.442 Charge balance + pe = -3.803 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 11 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89011 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.289e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.005e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.798e-13 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 93 (219 overall) + Total H = 1.110123e+02 + Total O = 5.550664e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.839e-05 2.802e-05 -4.547 -4.553 -0.006 -4.13 + H+ 3.660e-10 3.613e-10 -9.437 -9.442 -0.006 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.048e-06 + Al(OH)4- 2.048e-06 2.021e-06 -5.689 -5.694 -0.006 (0) + Al(OH)3 3.874e-10 3.874e-10 -9.412 -9.412 0.000 (0) + Al(OH)2+ 9.625e-13 9.500e-13 -12.017 -12.022 -0.006 (0) + AlOH+2 4.614e-17 4.379e-17 -16.336 -16.359 -0.023 -27.83 + Al+3 1.789e-21 1.593e-21 -20.747 -20.798 -0.050 -42.44 +Ca 3.449e-05 + Ca+2 3.447e-05 3.272e-05 -4.463 -4.485 -0.023 -18.21 + CaOH+ 1.523e-08 1.503e-08 -7.817 -7.823 -0.006 (0) +H(0) 7.475e-15 + H2 3.738e-15 3.738e-15 -14.427 -14.427 0.000 28.61 +K 4.954e-07 + K+ 4.954e-07 4.889e-07 -6.305 -6.311 -0.006 8.99 +Mg 4.142e-08 + Mg+2 4.102e-08 3.893e-08 -7.387 -7.410 -0.023 -21.89 + MgOH+ 3.964e-10 3.913e-10 -9.402 -9.408 -0.006 (0) +Na 2.481e-05 + Na+ 2.481e-05 2.449e-05 -4.605 -4.611 -0.006 -1.51 + NaOH 6.859e-20 6.860e-20 -19.164 -19.164 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.525 -63.525 0.000 30.40 +Si 2.184e-04 + H4SiO4 1.545e-04 1.545e-04 -3.811 -3.811 0.000 52.08 + H3SiO4- 6.389e-05 6.305e-05 -4.195 -4.200 -0.006 27.95 + H2SiO4-2 1.251e-08 1.187e-08 -7.903 -7.925 -0.023 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.27 7.53 10.80 Al(OH)3 + Albite -3.74 -21.74 -18.00 NaAlSi3O8 + Anorthite -3.78 -23.50 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.85 -46.88 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.26 -3.81 -3.55 SiO2 + Chlorite(14A) -7.38 61.00 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.40 26.80 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.58 7.53 8.11 Al(OH)3 + H2(g) -11.33 -14.43 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.14 -43.41 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -2.87 -23.44 -20.57 KAlSi3O8 + K-mica 1.58 14.28 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.62 3.60 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.61 2.22 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.60 3.11 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.61 2.80 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -60.63 -63.53 -2.89 O2 + Quartz 0.17 -3.81 -3.98 SiO2 + Sepiolite -4.24 11.52 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.14 11.52 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.10 -3.81 -2.71 SiO2 + Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 16. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 1e+06 seconds (Incremented time: 2.37113e+06 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -6.631e-07 3.991e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 7.571e-05 7.626e-05 5.535e-07 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.991e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.019e-02 3.463e-03 2.552e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.505e-01 0.000 + Na0.34X_montm_mg 9.927e-03 3.375e-03 2.487e-01 0.000 + Ca0.17X_montm_mg 9.796e-03 3.330e-03 2.455e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.042e-06 2.042e-06 + Ca 3.477e-05 3.477e-05 + K 4.976e-07 4.976e-07 + Mg 4.183e-08 4.183e-08 + Na 2.492e-05 2.492e-05 + Si 2.199e-04 2.199e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.443 Charge balance + pe = -3.825 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 11 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89011 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.298e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.012e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.802e-13 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 44 (104 overall) + Total H = 1.110123e+02 + Total O = 5.550665e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.847e-05 2.810e-05 -4.546 -4.551 -0.006 -4.13 + H+ 3.649e-10 3.602e-10 -9.438 -9.443 -0.006 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.042e-06 + Al(OH)4- 2.042e-06 2.015e-06 -5.690 -5.696 -0.006 (0) + Al(OH)3 3.850e-10 3.851e-10 -9.414 -9.414 0.000 (0) + Al(OH)2+ 9.537e-13 9.413e-13 -12.021 -12.026 -0.006 (0) + AlOH+2 4.559e-17 4.326e-17 -16.341 -16.364 -0.023 -27.83 + Al+3 1.762e-21 1.569e-21 -20.754 -20.805 -0.051 -42.44 +Ca 3.477e-05 + Ca+2 3.475e-05 3.298e-05 -4.459 -4.482 -0.023 -18.21 + CaOH+ 1.540e-08 1.519e-08 -7.813 -7.818 -0.006 (0) +H(0) 8.197e-15 + H2 4.099e-15 4.099e-15 -14.387 -14.387 0.000 28.61 +K 4.976e-07 + K+ 4.976e-07 4.911e-07 -6.303 -6.309 -0.006 8.99 +Mg 4.183e-08 + Mg+2 4.143e-08 3.931e-08 -7.383 -7.405 -0.023 -21.89 + MgOH+ 4.015e-10 3.963e-10 -9.396 -9.402 -0.006 (0) +Na 2.492e-05 + Na+ 2.492e-05 2.459e-05 -4.603 -4.609 -0.006 -1.51 + NaOH 6.911e-20 6.911e-20 -19.160 -19.160 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.605 -63.605 0.000 30.40 +Si 2.199e-04 + H4SiO4 1.554e-04 1.554e-04 -3.808 -3.808 0.000 52.08 + H3SiO4- 6.448e-05 6.363e-05 -4.191 -4.196 -0.006 27.95 + H2SiO4-2 1.267e-08 1.202e-08 -7.897 -7.920 -0.023 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.27 7.53 10.80 Al(OH)3 + Albite -3.73 -21.73 -18.00 NaAlSi3O8 + Anorthite -3.78 -23.49 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.85 -46.87 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.26 -3.81 -3.55 SiO2 + Chlorite(14A) -7.35 61.03 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.37 26.83 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.58 7.53 8.11 Al(OH)3 + H2(g) -11.29 -14.39 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.13 -43.40 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -2.86 -23.43 -20.57 KAlSi3O8 + K-mica 1.58 14.29 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.61 3.61 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.60 2.23 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.59 3.11 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.60 2.81 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -60.71 -63.61 -2.89 O2 + Quartz 0.17 -3.81 -3.98 SiO2 + Sepiolite -4.22 11.54 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.12 11.54 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.10 -3.81 -2.71 SiO2 + Talc -2.19 19.21 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 17. + +Using solution 1. +Using exchange 1. Exchange assemblage after simulation 6. +Using pure phase assemblage 1. +Using kinetics 1. + +Kinetics 1. + + Time step: 3e+06 seconds (Incremented time: 5.37113e+06 seconds) + + Rate name Delta Moles Total Moles Reactant Coefficient + + Montmorillonite(MgNa) -4.535e-09 3.991e-02 Mg0.34Al1.66Si4O10(OH)2 1 + +-------------------------------Phase assemblage-------------------------------- + + Moles in assemblage +Phase SI log IAP log K(T, P) Initial Final Delta + +Kaolinite 0.00 7.44 7.43 7.626e-05 7.627e-05 3.785e-09 + +-----------------------------Exchange composition------------------------------ + +X_montm_mg 3.991e-02 mol [1 (mol X_montm_mg)/(mol kinetic reactant Montmorillonite(MgNa))] + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + Mg0.17X_montm_mg 1.019e-02 3.463e-03 2.552e-01 0.000 + K0.34X_montm_mg 9.999e-03 3.400e-03 2.505e-01 0.000 + Na0.34X_montm_mg 9.927e-03 3.375e-03 2.487e-01 0.000 + Ca0.17X_montm_mg 9.796e-03 3.330e-03 2.455e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.042e-06 2.042e-06 + Ca 3.477e-05 3.477e-05 + K 4.977e-07 4.977e-07 + Mg 4.183e-08 4.183e-08 + Na 2.492e-05 2.492e-05 + Si 2.199e-04 2.199e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.443 Charge balance + pe = -3.074 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 11 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89011 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.298e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.012e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.968e-13 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 14 (32 overall) + Total H = 1.110123e+02 + Total O = 5.550665e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.848e-05 2.810e-05 -4.546 -4.551 -0.006 -4.13 + H+ 3.649e-10 3.602e-10 -9.438 -9.443 -0.006 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.042e-06 + Al(OH)4- 2.042e-06 2.015e-06 -5.690 -5.696 -0.006 (0) + Al(OH)3 3.850e-10 3.850e-10 -9.415 -9.414 0.000 (0) + Al(OH)2+ 9.537e-13 9.412e-13 -12.021 -12.026 -0.006 (0) + AlOH+2 4.558e-17 4.325e-17 -16.341 -16.364 -0.023 -27.83 + Al+3 1.762e-21 1.568e-21 -20.754 -20.805 -0.051 -42.44 +Ca 3.477e-05 + Ca+2 3.476e-05 3.298e-05 -4.459 -4.482 -0.023 -18.21 + CaOH+ 1.540e-08 1.520e-08 -7.813 -7.818 -0.006 (0) +H(0) 2.577e-16 + H2 1.289e-16 1.289e-16 -15.890 -15.890 0.000 28.61 +K 4.977e-07 + K+ 4.977e-07 4.911e-07 -6.303 -6.309 -0.006 8.99 +Mg 4.183e-08 + Mg+2 4.143e-08 3.932e-08 -7.383 -7.405 -0.023 -21.89 + MgOH+ 4.015e-10 3.963e-10 -9.396 -9.402 -0.006 (0) +Na 2.492e-05 + Na+ 2.492e-05 2.459e-05 -4.603 -4.609 -0.006 -1.51 + NaOH 6.911e-20 6.911e-20 -19.160 -19.160 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -60.600 -60.600 0.000 30.40 +Si 2.199e-04 + H4SiO4 1.554e-04 1.554e-04 -3.808 -3.808 0.000 52.08 + H3SiO4- 6.448e-05 6.364e-05 -4.191 -4.196 -0.006 27.95 + H2SiO4-2 1.267e-08 1.202e-08 -7.897 -7.920 -0.023 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.27 7.53 10.80 Al(OH)3 + Albite -3.73 -21.73 -18.00 NaAlSi3O8 + Anorthite -3.78 -23.49 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.85 -46.87 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.26 -3.81 -3.55 SiO2 + Chlorite(14A) -7.35 61.03 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.37 26.83 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.58 7.53 8.11 Al(OH)3 + H2(g) -12.79 -15.89 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.13 -43.40 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -2.86 -23.43 -20.57 KAlSi3O8 + K-mica 1.58 14.29 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.61 3.61 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.60 2.23 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.59 3.11 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.60 2.81 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -57.71 -60.60 -2.89 O2 + Quartz 0.17 -3.81 -3.98 SiO2 + Sepiolite -4.22 11.54 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.12 11.54 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.10 -3.81 -2.71 SiO2 + Talc -2.19 19.21 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 7. +------------------------------------ + + USE solution 99 + REACTION + USER_GRAPH 4 + -connect_simulations false + 1 t = get(1) + 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red + 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green + 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue + 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange +----------------------------------------- +Beginning of batch-reaction calculations. +----------------------------------------- + +Reaction step 1. + +Using solution 99. Solution after simulation 4. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + + Relative + Element moles + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Al 2.014e-06 2.014e-06 + Ca 3.641e-05 3.641e-05 + K 4.794e-07 4.794e-07 + Mg 3.481e-08 3.481e-08 + Na 2.452e-05 2.452e-05 + Si 2.266e-04 2.266e-04 + +----------------------------Description of solution---------------------------- + + pH = 9.449 Charge balance + pe = 8.597 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 11 + Density (g/cm³) = 0.99706 + Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89011 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.343e-04 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 1.039e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -5.480e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 0 + Total H = 1.110123e+02 + Total O = 5.550666e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + OH- 2.883e-05 2.844e-05 -4.540 -4.546 -0.006 -4.13 + H+ 3.606e-10 3.559e-10 -9.443 -9.449 -0.006 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 +Al 2.014e-06 + Al(OH)4- 2.013e-06 1.987e-06 -5.696 -5.702 -0.006 (0) + Al(OH)3 3.751e-10 3.751e-10 -9.426 -9.426 0.000 (0) + Al(OH)2+ 9.181e-13 9.059e-13 -12.037 -12.043 -0.006 (0) + AlOH+2 4.339e-17 4.113e-17 -16.363 -16.386 -0.023 -27.83 + Al+3 1.659e-21 1.474e-21 -20.780 -20.832 -0.051 -42.44 +Ca 3.641e-05 + Ca+2 3.640e-05 3.451e-05 -4.439 -4.462 -0.023 -18.21 + CaOH+ 1.631e-08 1.609e-08 -7.788 -7.793 -0.006 (0) +H(0) 1.148e-39 + H2 5.739e-40 5.739e-40 -39.241 -39.241 0.000 28.61 +K 4.794e-07 + K+ 4.794e-07 4.730e-07 -6.319 -6.325 -0.006 8.99 +Mg 3.481e-08 + Mg+2 3.447e-08 3.269e-08 -7.463 -7.486 -0.023 -21.89 + MgOH+ 3.379e-10 3.335e-10 -9.471 -9.477 -0.006 (0) +Na 2.452e-05 + Na+ 2.452e-05 2.419e-05 -4.611 -4.616 -0.006 -1.51 + NaOH 6.880e-20 6.880e-20 -19.162 -19.162 0.000 (0) +O(0) 2.531e-14 + O2 1.265e-14 1.265e-14 -13.898 -13.898 0.000 30.40 +Si 2.266e-04 + H4SiO4 1.596e-04 1.596e-04 -3.797 -3.797 0.000 52.08 + H3SiO4- 6.701e-05 6.612e-05 -4.174 -4.180 -0.006 27.95 + H2SiO4-2 1.333e-08 1.264e-08 -7.875 -7.898 -0.023 (0) + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1 atm) + + Al(OH)3(a) -3.29 7.51 10.80 Al(OH)3 + Albite -3.71 -21.71 -18.00 NaAlSi3O8 + Anorthite -3.75 -23.46 -19.71 CaAl2Si2O8 + Ca-Montmorillonite -1.83 -46.85 -45.03 Ca0.165Al2.33Si3.67O10(OH)2 + Chalcedony -0.25 -3.80 -3.55 SiO2 + Chlorite(14A) -7.68 60.70 68.38 Mg5Al2Si3O10(OH)8 + Chrysotile -5.56 26.64 32.20 Mg3Si2O5(OH)4 + Gibbsite -0.60 7.51 8.11 Al(OH)3 + H2(g) -36.14 -39.24 -3.10 H2 + H2O(g) -1.50 -0.00 1.50 H2O + Illite -3.14 -43.41 -40.27 K0.6Mg0.25Al2.3Si3.5O10(OH)2 + K-feldspar -2.85 -23.42 -20.57 KAlSi3O8 + K-mica 1.57 14.28 12.70 KAl3Si3O10(OH)2 + Kaolinite 0.00 7.44 7.43 Al2Si2O5(OH)4 + Montmorillonite(MgCa) -0.60 3.62 4.22 Ca0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgK) -0.60 2.23 2.83 K0.34Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgMg) -0.60 3.11 3.71 Mg0.17Mg0.34Al1.66Si4O10(OH)2 + Montmorillonite(MgNa) -0.60 2.81 3.41 Na0.34Mg0.34Al1.66Si4O10(OH)2 + O2(g) -11.01 -13.90 -2.89 O2 + Quartz 0.18 -3.80 -3.98 SiO2 + Sepiolite -4.33 11.43 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.23 11.43 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.09 -3.80 -2.71 SiO2 + Talc -2.35 19.05 21.40 Mg3Si4O10(OH)2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 8. +------------------------------------ + +------------------------------- +End of Run after 1.819 Seconds. +------------------------------- + diff --git a/mytest/kin_r_101.sel b/mytest/kin_r_101.sel new file mode 100644 index 000000000..93b4f5cca --- /dev/null +++ b/mytest/kin_r_101.sel @@ -0,0 +1,23 @@ + Mu SC + 0.000000155027 0.0510773043 + 0.000000100644 0.0547821292 + 0.000134321939 11.2936691516 + 0.000134321939 11.2936691516 + 0.000000136802 0.0557258540 + 0.000000142052 0.0561891444 + 0.000000194750 0.0610411786 + 0.000000685186 0.1050880564 + 0.000001567563 0.2027569251 + 0.000002852108 0.3923130633 + 0.000005386594 0.7811408049 + 0.000008560543 1.2515610126 + 0.000012256015 1.7645825379 + 0.000016383770 2.2965661045 + 0.000032371909 4.0590519935 + 0.000050338957 5.6849736292 + 0.000068534840 7.1080635425 + 0.000109846760 9.8685806907 + 0.000128869882 11.0032842488 + 0.000129828126 11.0588083736 + 0.000129834680 11.0591876845 + 0.000134321939 11.2936691516 diff --git a/mytest/rho_H3PO4 b/mytest/rho_H3PO4 index e2167925b..35f4d87f3 100644 --- a/mytest/rho_H3PO4 +++ b/mytest/rho_H3PO4 @@ -1,88 +1,88 @@ DATABASE ../database/phreeqc.dat SELECTED_OUTPUT 101 - -file rho_H3PO4_101.sel + -file rho_H3PO4_101.sel USER_PUNCH 101 - -headings Mu SC - -start + -headings Mu SC + -start 10 PUNCH STR_F$(MU, 20, 12) 20 PUNCH STR_F$(SC, 20, 10) - -end + -end #PRINT; -reset false -SOLUTION_SPECIES -PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt -PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt -PO4-3 + 2 H+ = H2PO4- # minteq.v4.dat, NIST46.3 - -log_k 19.573 - -delta_h -18 kJ - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt -PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 - log_k 21.721 - delta_h -10.1 kJ - -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt +# SOLUTION_SPECIES +# PO4-3 = PO4-3 + # -gamma 4.0 0 + # -dw 0.612e-9 + # -Vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt +# PO4-3 + H+ = HPO4-2 + # -log_k 12.346 + # -delta_h -3.530 kcal + # -gamma 5.0 0 + # -dw 0.69e-9 + # -Vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt +# PO4-3 + 2 H+ = H2PO4- # minteq.v4.dat, NIST46.3 + # -log_k 19.573 + # -delta_h -18 kJ + # -gamma 5.4 0 + # -dw 0.846e-9 + # -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt +# PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 + # log_k 21.721 + # delta_h -10.1 kJ + # -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt -# P < 4.2 +# # P < 4.2 -SOLUTION_SPECIES -PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt - -Vm 1.2391163E+00 -9.0700000E+00 9.3100000E+00 -2.4000000E+00 5.6100000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 -1.4148347E-02 1.0000000E+00 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 -PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - # -log_k 12.375 # log_k and delta_h from minteq.v4.dat, NIST46.3 - # -delta_h -15 kJ +# SOLUTION_SPECIES +# PO4-3 = PO4-3 + # -gamma 4.0 0 + # -dw 0.612e-9 + # -Vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt + # -Vm 1.2391163E+00 -9.0700000E+00 9.3100000E+00 -2.4000000E+00 5.6100000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 -1.4148347E-02 1.0000000E+00 + # -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 +# PO4-3 + H+ = HPO4-2 + # -log_k 12.346 + # -delta_h -3.530 kcal # -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt - -Vm 3.5184654E+00 1.0900000E+00 8.3884226E-01 -2.8200000E+00 3.3400000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 -PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - # -log_k 19.573 # log_k and delta_h from minteq.v4.dat, NIST46.3 - # -delta_h -18 kJ + # # -log_k 12.375 # log_k and delta_h from minteq.v4.dat, NIST46.3 + # # -delta_h -15 kJ + # # -gamma 5.0 0 + # -dw 0.69e-9 + # -Vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt + # -Vm 3.5184654E+00 1.0900000E+00 8.3884226E-01 -2.8200000E+00 3.3400000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 + # -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 +# PO4-3 + 2 H+ = H2PO4- + # -log_k 19.553 + # -delta_h -4.520 kcal + # -gamma 5.4 0 + # # -log_k 19.573 # log_k and delta_h from minteq.v4.dat, NIST46.3 + # # -delta_h -18 kJ + # # -gamma 5.4 0 + # -dw 0.846e-9 + # -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt + # -Vm 5.5819275E+00 8.0600000E+00 1.2243286E+01 -3.1100000E+00 1.3000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 + # -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 +# PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 + # log_k 21.721 + # delta_h -10.1 kJ + # -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt + # -Vm 7.4700000E+00 1.2400000E+01 6.2900000E+00 -3.2900000E+00 0.0000000E+00 # 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 + # -Vm 7.47 12.4 6.29 -3.29 0 +# Na+ + HPO4-2 = NaHPO4- + # -log_k 0.29 + # -gamma 5.4 0 +# # Na+ + H+ + PO4-3 = NaHPO4- + # # -log_k 13.445 # log_k from minteq.v4.dat, NIST46.3 + # # -gamma 5.4 0 # 0.0000000E+00 + # -Vm 5.2000000E+00 8.1000000E+00 1.3000000E+01 -3.0000000E+00 9.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 + # -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 +# K+ + HPO4-2 = KHPO4- + # -log_k 0.29 # -gamma 5.4 0 - -dw 0.846e-9 - -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt - -Vm 5.5819275E+00 8.0600000E+00 1.2243286E+01 -3.1100000E+00 1.3000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 -PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 - log_k 21.721 - delta_h -10.1 kJ - -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt - -Vm 7.4700000E+00 1.2400000E+01 6.2900000E+00 -3.2900000E+00 0.0000000E+00 # 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 - -Vm 7.47 12.4 6.29 -3.29 0 -Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 -# Na+ + H+ + PO4-3 = NaHPO4- - # -log_k 13.445 # log_k from minteq.v4.dat, NIST46.3 - # -gamma 5.4 0 # 0.0000000E+00 - -Vm 5.2000000E+00 8.1000000E+00 1.3000000E+01 -3.0000000E+00 9.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 -K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 -# K+ + H+ + PO4-3 = KHPO4- - # -log_k 13.255 # log_k from minteq.v4.dat, NIST46.3 - # -gamma 5.4 0 # 0.0000000E+00 - -Vm 5.4000000E+00 8.1000000E+00 1.9000000E+01 -3.1000000E+00 7.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 +# # K+ + H+ + PO4-3 = KHPO4- + # # -log_k 13.255 # log_k from minteq.v4.dat, NIST46.3 + # # -gamma 5.4 0 # 0.0000000E+00 + # -Vm 5.4000000E+00 8.1000000E+00 1.9000000E+01 -3.1000000E+00 7.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 + # -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 @@ -96,8 +96,8 @@ REACTION_PRESSURE; 1.000000 # from 0 to 5. REACTION; H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 -USER_GRAPH; -headings 16.ºC, 1.atm density - -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" "density / (g/L)" +USER_GRAPH; -headings 16.oC,.1.atm + -axis_titles "H3PO4 / (mol/kg H2O)" "density / (g/L)" 10 data 0, 1023.200000, 1051.400000, 1111.400000, 1179.100000, 1251.100000, 20 dim d(6) 30 read d(1), d(2), d(3), d(4), d(5), d(6), @@ -109,7 +109,7 @@ USER_GRAPH; -headings 16.ºC, 1.atm density # 64 if tc <> 25 then end # dif = 0 90 if step_no = 6 then put(step_no + get(1), 1) 100 if step_no = 1 then end -110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Square, line_w = 0, color = Red +110 plot_xy tot("P"), d(step_no), symbol = Square, line_w = 0, color = Red 120 plot_xy tot("P"), 1e3 * rho, symbol = None, color = Red, y_axis = 2 150 end END @@ -127,7 +127,7 @@ REACTION; H3PO4 1 1.111200 1.210700 1.236000 1.363700 1.494300 1.628000 1.764800 1.904800 2.048300 2.195200 2.345800 2.377900 2.500100 2.658400 2.820600 2.987200 3.158000 3.333500 3.513700 3.698800 3.889100 \ 4.084700 4.150500 4.285900 4.493000 4.706100 4.925600 5.151800 5.384900 5.625300 5.873300 6.129300 6.393700 6.434100 6.667000 6.949500 7.241700 7.544200 7.857500 8.182200 8.518900 8.868300 \ 9.231200 9.608300 10.000500 10.408600 10.833800 11.277100 11.739700 12.222800 12.727900 13.256400 13.810200 14.390900 -USER_GRAPH; -headings 25.ºC, 1.atm density +USER_GRAPH; -headings 25.oC,.1.atm density # -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" 10 data 0, 997.600000, 998.100000, 998.700000, 999.300000, 999.730000, 999.770000, 999.800000, 1000.400000, 1000.360000, 1000.900000, 1001.500000, 1002.000000, 1002.140000, 1002.430000, 1002.600000, 1002.900000, 1003.100000, 1003.700000, 1004.080000, 1004.200000, 1004.700000, \ 1005.300000, 1005.800000, 1006.400000, 1006.900000, 1007.500000, 1008.000000, 1008.500000, 1009.100000, 1009.600000, 1010.100000, 1010.700000, 1011.200000, 1011.100000, 1011.800000, 1012.300000, 1012.900000, 1012.690000, 1013.400000, 1014.000000, 1014.270000, 1014.500000, \ @@ -152,7 +152,7 @@ d(127), d(128), d(129), d(130), d(131), d(132), d(133), d(134), d(135), d(136), # 64 if tc <> 25 then end # dif = 0 90 if step_no = 139 then put(step_no + get(1), 1) 100 if step_no = 1 then end -110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Diamond, line_w = 0, color = Green +110 plot_xy tot("P"), d(step_no), symbol = Diamond, line_w = 0, color = Green 120 plot_xy tot("P"), 1e3 * rho, symbol = None, color = Green, y_axis = 2 150 end END @@ -163,7 +163,7 @@ REACTION_PRESSURE; 1.000000 # from 143 to 150. REACTION; H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 -USER_GRAPH; -headings 41.ºC, 1.atm density +USER_GRAPH; -headings 41.oC,.1.atm density # -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" 10 data 0, 1015.900000, 1042.800000, 1100.900000, 1166.700000, 1237.100000, 1318.300000, 1407.600000, 20 dim d(8) @@ -176,7 +176,7 @@ USER_GRAPH; -headings 41.ºC, 1.atm density # 64 if tc <> 25 then end # dif = 0 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end -110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Triangle, line_w = 0, color = Blue +110 plot_xy tot("P"), d(step_no), symbol = Triangle, line_w = 0, color = Blue 120 plot_xy tot("P"), 1e3 * rho, symbol = None , color = Blue, y_axis = 2 150 end END @@ -187,7 +187,7 @@ REACTION_PRESSURE; 1.000000 # from 150 to 157. REACTION; H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 -USER_GRAPH; -headings 61.ºC, 1.atm density +USER_GRAPH; -headings 61.oC,.1.atm density # -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" 10 data 0, 1006.400000, 1032.900000, 1091.000000, 1156.100000, 1225.600000, 1305.400000, 1393.800000, 20 dim d(8) @@ -200,7 +200,7 @@ USER_GRAPH; -headings 61.ºC, 1.atm density # 64 if tc <> 25 then end # dif = 0 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end -110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Circle, line_w = 0, color = Orange +110 plot_xy tot("P"), d(step_no), symbol = Circle, line_w = 0, color = Orange 120 plot_xy tot("P"), 1e3 * rho, symbol = None , color = Orange, y_axis = 2 150 end END @@ -211,7 +211,7 @@ REACTION_PRESSURE; 1.000000 # from 157 to 164. REACTION; H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 -USER_GRAPH; -headings 81.ºC, 1.atm density +USER_GRAPH; -headings 81.oC,.1.atm density # -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" 10 data 0, 994.500000, 1021.000000, 1077.600000, 1141.500000, 1211.600000, 1291.100000, 1378.800000, 20 dim d(8) @@ -224,7 +224,7 @@ USER_GRAPH; -headings 81.ºC, 1.atm density # 64 if tc <> 25 then end # dif = 0 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end -110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = XCross, line_w = 0, color = Magenta +110 plot_xy tot("P"), d(step_no), symbol = XCross, line_w = 0, color = Magenta 120 plot_xy tot("P"), 1e3 * rho , symbol = None , color = Magenta, y_axis = 2 150 end END diff --git a/mytest/rho_H3PO4.out b/mytest/rho_H3PO4.out index 5dffa0d1d..4988ff15e 100644 --- a/mytest/rho_H3PO4.out +++ b/mytest/rho_H3PO4.out @@ -1,4 +1,3 @@ -WARNING: Database file from DATABASE keyword is used; command line argument ignored. Input file: rho_H3PO4 Output file: rho_H3PO4.out Database file: ../database/phreeqc.dat @@ -14,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -23,73 +22,13 @@ Reading input data for simulation 1. DATABASE ../database/phreeqc.dat SELECTED_OUTPUT 101 - file rho_H3PO4_101.sel + file rho_H3PO4_101.sel USER_PUNCH 101 - headings Mu SC - start + headings Mu SC + start 10 PUNCH STR_F$(MU, 20, 12) 20 PUNCH STR_F$(SC, 20, 10) - end - SOLUTION_SPECIES - PO4-3 = PO4-3 - gamma 4.0 0 - dw 0.612e-9 - vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt - PO4-3 + H+ = HPO4-2 - log_k 12.346 - delta_h -3.530 kcal - gamma 5.0 0 - dw 0.69e-9 - vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt - PO4-3 + 2 H+ = H2PO4- # minteq.v4.dat, NIST46.3 - log_k 19.573 - delta_h -18 kJ - gamma 5.4 0 - dw 0.846e-9 - vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt - PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 - log_k 21.721 - delta_h -10.1 kJ - vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt - SOLUTION_SPECIES - PO4-3 = PO4-3 - gamma 4.0 0 - dw 0.612e-9 - vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt - vm 1.2391163E+00 -9.0700000E+00 9.3100000E+00 -2.4000000E+00 5.6100000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 -1.4148347E-02 1.0000000E+00 - vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 - PO4-3 + H+ = HPO4-2 - log_k 12.346 - delta_h -3.530 kcal - gamma 5.0 0 - dw 0.69e-9 - vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt - vm 3.5184654E+00 1.0900000E+00 8.3884226E-01 -2.8200000E+00 3.3400000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 - vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 - PO4-3 + 2 H+ = H2PO4- - log_k 19.553 - delta_h -4.520 kcal - gamma 5.4 0 - dw 0.846e-9 - vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt - vm 5.5819275E+00 8.0600000E+00 1.2243286E+01 -3.1100000E+00 1.3000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 - PO4-3 + 3H+ = H3PO4 # minteq.v4.dat, NIST46.3 - log_k 21.721 - delta_h -10.1 kJ - vm 8.2727 12.4182 0.8691 -3.2924 -0.22 # supcrt - vm 7.4700000E+00 1.2400000E+01 6.2900000E+00 -3.2900000E+00 0.0000000E+00 # 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 - vm 7.47 12.4 6.29 -3.29 0 - Na+ + HPO4-2 = NaHPO4- - log_k 0.29 - gamma 5.4 0 - vm 5.2000000E+00 8.1000000E+00 1.3000000E+01 -3.0000000E+00 9.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 - K+ + HPO4-2 = KHPO4- - log_k 0.29 - gamma 5.4 0 - vm 5.4000000E+00 8.1000000E+00 1.9000000E+01 -3.1000000E+00 7.0000000E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.6193384E-02 1.0000000E+00 - vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 + end SOLUTION 1 pH 7 charge END @@ -174,8 +113,8 @@ Reading input data for simulation 3. H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 USER_GRAPH - -headings 16.ºC, 1.atm density - -axis_titles "H3PO4 / (mol/kg H2O)" "(measured - calculated) density / (g/L)" "density / (g/L)" + -headings 16.oC,.1.atm + -axis_titles "H3PO4 / (mol/kg H2O)" "density / (g/L)" 10 data 0, 1023.200000, 1051.400000, 1111.400000, 1179.100000, 1251.100000, 20 dim d(6) 30 read d(1), d(2), d(3), d(4), d(5), d(6), @@ -184,7 +123,7 @@ Reading input data for simulation 3. 60 if step_no = 1 then dif = 0 else dif = rho * 1e3 - d(step_no) 90 if step_no = 6 then put(step_no + get(1), 1) 100 if step_no = 1 then end - 110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Square, line_w = 0, color = Red + 110 plot_xy tot("P"), d(step_no), symbol = Square, line_w = 0, color = Red 120 plot_xy tot("P"), 1e3 * rho, symbol = None, color = Red, y_axis = 2 150 end END @@ -662,7 +601,7 @@ Reading input data for simulation 4. H3PO4 1 0 0.010000 0.020000 0.030100 0.040200 0.049100 0.050000 0.050300 0.060400 0.060700 0.070500 0.080600 0.090800 0.094100 0.099600 0.101000 0.105500 0.111200 0.121500 0.127200 0.131700 0.142000 0.152300 0.162600 0.172900 0.183300 0.193700 0.204100 0.214500 0.225000 0.235400 0.245900 0.256400 0.267000 0.268600 0.277500 0.288100 0.298700 0.300100 0.309300 0.319900 0.320600 0.330600 0.341300 0.352000 0.362700 0.373500 0.384200 0.395000 0.405800 0.416700 0.427500 0.438400 0.438700 0.449300 0.460300 0.466800 0.471200 0.482200 0.493200 0.500000 0.504200 0.515300 0.526300 0.537400 0.545000 0.548500 0.559700 0.570900 0.582000 0.593200 0.604500 0.615700 0.627000 0.638300 0.699200 0.752700 0.778200 0.808200 0.869600 0.989100 1.000600 1.014200 1.021400 1.031500 1.111200 1.210700 1.236000 1.363700 1.494300 1.628000 1.764800 1.904800 2.048300 2.195200 2.345800 2.377900 2.500100 2.658400 2.820600 2.987200 3.158000 3.333500 3.513700 3.698800 3.889100 4.084700 4.150500 4.285900 4.493000 4.706100 4.925600 5.151800 5.384900 5.625300 5.873300 6.129300 6.393700 6.434100 6.667000 6.949500 7.241700 7.544200 7.857500 8.182200 8.518900 8.868300 9.231200 9.608300 10.000500 10.408600 10.833800 11.277100 11.739700 12.222800 12.727900 13.256400 13.810200 14.390900 USER_GRAPH - -headings 25.ºC, 1.atm density + -headings 25.oC,.1.atm density 10 data 0, 997.600000, 998.100000, 998.700000, 999.300000, 999.730000, 999.770000, 999.800000, 1000.400000, 1000.360000, 1000.900000, 1001.500000, 1002.000000, 1002.140000, 1002.430000, 1002.600000, 1002.900000, 1003.100000, 1003.700000, 1004.080000, 1004.200000, 1004.700000, 1005.300000, 1005.800000, 1006.400000, 1006.900000, 1007.500000, 1008.000000, 1008.500000, 1009.100000, 1009.600000, 1010.100000, 1010.700000, 1011.200000, 1011.100000, 1011.800000, 1012.300000, 1012.900000, 1012.690000, 1013.400000, 1014.000000, 1014.270000, 1014.500000, 1015.100000, 1015.600000, 1016.200000, 1016.700000, 1017.300000, 1017.800000, 1018.300000, 1018.900000, 1019.500000, 1020.000000, 1019.630000, 1020.600000, 1021.100000, 1021.300000, 1021.700000, 1022.200000, 1022.800000, 1022.660000, 1023.300000, 1023.900000, 1024.400000, 1025.000000, 1025.760000, 1025.500000, 1026.100000, 1026.600000, 1027.200000, 1027.800000, 1028.300000, 1028.900000, 1029.400000, 1030.000000, 1032.370000, 1035.600000, 1037.410000, 1037.520000, 1041.200000, 1046.900000, 1046.540000, 1047.180000, 1049.260000, 1048.900000, 1052.700000, 1056.220000, 1058.400000, 1064.300000, 1070.200000, 1076.200000, 1082.200000, 1088.300000, 1094.400000, 1100.500000, 1106.800000, 1107.200000, 1113.100000, 1119.500000, 1125.900000, 1132.400000, 1138.900000, 1145.500000, 1152.200000, 1158.900000, 1165.700000, 1172.600000, 1174.200000, 1179.500000, 1186.500000, 1193.600000, 1200.700000, 1207.900000, 1215.100000, 1222.500000, 1229.900000, 1237.400000, 1244.900000, 1246.100000, 1252.600000, 1260.300000, 1268.100000, 1275.900000, 1283.900000, 1291.900000, 1300.100000, 1308.300000, 1316.500000, 1324.900000, 1333.300000, 1341.800000, 1350.400000, 1359.100000, 1367.800000, 1376.700000, 1385.600000, 1394.600000, 1403.700000, 1412.900000, 20 dim d(139) 30 read d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8), d(9), d(10), d(11), d(12), d(13), d(14), d(15), d(16), d(17), d(18), d(19), d(20), d(21), d(22), d(23), d(24), d(25), d(26), d(27), d(28), d(29), d(30), d(31), d(32), d(33), d(34), d(35), d(36), d(37), d(38), d(39), d(40), d(41), d(42), d(43), d(44), d(45), d(46), d(47), d(48), d(49), d(50), d(51), d(52), d(53), d(54), d(55), d(56), d(57), d(58), d(59), d(60), d(61), d(62), d(63), d(64), d(65), d(66), d(67), d(68), d(69), d(70), d(71), d(72), d(73), d(74), d(75), d(76), d(77), d(78), d(79), d(80), d(81), d(82), d(83), d(84), d(85), d(86), d(87), d(88), d(89), d(90), d(91), d(92), d(93), d(94), d(95), d(96), d(97), d(98), d(99), d(100), d(101), d(102), d(103), d(104), d(105), d(106), d(107), d(108), d(109), d(110), d(111), d(112), d(113), d(114), d(115), d(116), d(117), d(118), d(119), d(120), d(121), d(122), d(123), d(124), d(125), d(126), d(127), d(128), d(129), d(130), d(131), d(132), d(133), d(134), d(135), d(136), d(137), d(138), d(139), @@ -671,7 +610,7 @@ Reading input data for simulation 4. 60 if step_no = 1 then dif = 0 else dif = rho * 1e3 - d(step_no) 90 if step_no = 139 then put(step_no + get(1), 1) 100 if step_no = 1 then end - 110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Diamond, line_w = 0, color = Green + 110 plot_xy tot("P"), d(step_no), symbol = Diamond, line_w = 0, color = Green 120 plot_xy tot("P"), 1e3 * rho, symbol = None, color = Green, y_axis = 2 150 end END @@ -11255,7 +11194,7 @@ Reading input data for simulation 5. H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 USER_GRAPH - -headings 41.ºC, 1.atm density + -headings 41.oC,.1.atm density 10 data 0, 1015.900000, 1042.800000, 1100.900000, 1166.700000, 1237.100000, 1318.300000, 1407.600000, 20 dim d(8) 30 read d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8), @@ -11264,7 +11203,7 @@ Reading input data for simulation 5. 60 if step_no = 1 then dif = 0 else dif = rho * 1e3 - d(step_no) 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end - 110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Triangle, line_w = 0, color = Blue + 110 plot_xy tot("P"), d(step_no), symbol = Triangle, line_w = 0, color = Blue 120 plot_xy tot("P"), 1e3 * rho, symbol = None , color = Blue, y_axis = 2 150 end END @@ -11892,7 +11831,7 @@ Reading input data for simulation 6. H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 USER_GRAPH - -headings 61.ºC, 1.atm density + -headings 61.oC,.1.atm density 10 data 0, 1006.400000, 1032.900000, 1091.000000, 1156.100000, 1225.600000, 1305.400000, 1393.800000, 20 dim d(8) 30 read d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8), @@ -11901,7 +11840,7 @@ Reading input data for simulation 6. 60 if step_no = 1 then dif = 0 else dif = rho * 1e3 - d(step_no) 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end - 110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = Circle, line_w = 0, color = Orange + 110 plot_xy tot("P"), d(step_no), symbol = Circle, line_w = 0, color = Orange 120 plot_xy tot("P"), 1e3 * rho, symbol = None , color = Orange, y_axis = 2 150 end END @@ -12529,7 +12468,7 @@ Reading input data for simulation 7. H3PO4 1 0 0.466800 1.031500 2.377900 4.150500 6.434100 9.747700 14.716400 USER_GRAPH - -headings 81.ºC, 1.atm density + -headings 81.oC,.1.atm density 10 data 0, 994.500000, 1021.000000, 1077.600000, 1141.500000, 1211.600000, 1291.100000, 1378.800000, 20 dim d(8) 30 read d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8), @@ -12538,7 +12477,7 @@ Reading input data for simulation 7. 60 if step_no = 1 then dif = 0 else dif = rho * 1e3 - d(step_no) 90 if step_no = 8 then put(step_no + get(1), 1) 100 if step_no = 1 then end - 110 plot_xy tot("P"), 1e3 * rho - d(step_no), symbol = XCross, line_w = 0, color = Magenta + 110 plot_xy tot("P"), d(step_no), symbol = XCross, line_w = 0, color = Magenta 120 plot_xy tot("P"), 1e3 * rho , symbol = None , color = Magenta, y_axis = 2 150 end END @@ -13157,3 +13096,7 @@ End of simulation. Reading input data for simulation 8. ------------------------------------ +------------------------------- +End of Run after 1.389 Seconds. +------------------------------- + diff --git a/mytest/ss_kinetics.out b/mytest/ss_kinetics.out index 1d0e453c7..ddbc61b6e 100644 --- a/mytest/ss_kinetics.out +++ b/mytest/ss_kinetics.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -6355,6 +6355,6 @@ Reading input data for simulation 11. ------------------------------------- ------------------------------- -End of Run after 1.907 Seconds. +End of Run after 1.592 Seconds. ------------------------------- diff --git a/src/basicsubs.cpp b/src/basicsubs.cpp index 3ef3d6c5e..7b5a6f285 100644 --- a/src/basicsubs.cpp +++ b/src/basicsubs.cpp @@ -1759,7 +1759,7 @@ pr_pressure(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) { return phase_ptr->pr_p; } @@ -1807,7 +1807,7 @@ pr_phi(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) return phase_ptr->pr_phi; else return gas_comp_ptr->Get_phi(); diff --git a/src/read.cpp b/src/read.cpp index 5a30d1c68..f3a556b85 100644 --- a/src/read.cpp +++ b/src/read.cpp @@ -2439,7 +2439,7 @@ read_mean_gammas(void) /* ---------------------------------------------------------------------- */ { /* - * Reads kinetics data + * Reads MEAN_GAMMAS data * * Arguments: * none @@ -2540,7 +2540,7 @@ read_mean_gammas(void) break; case OPTION_ERROR: input_error++; - error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg("Unknown input in MEAN_GAMMAS keyword.", CONTINUE); error_msg(line_save, CONTINUE); break; }