diff --git a/Amm.dat b/Amm.dat index db9a8c37e..3b7466d40 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,6 +1,5 @@ -# PHREEQC.DAT for calculating pressure dependence of reactions, with -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES @@ -64,38 +63,43 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 Na+ = Na+ -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 Fe+2 = Fe+2 -gamma 6.0 0 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Mn+2 = Mn+2 -gamma 6.0 0 -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 Al+3 = Al+3 -gamma 9.0 0 -dw 0.559e-9 @@ -103,12 +107,14 @@ Al+3 = Al+3 Ba+2 = Ba+2 -gamma 5.0 0 -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 Sr+2 = Sr+2 -gamma 5.260 0.121 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -116,56 +122,63 @@ Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 0 1.12 2.84 - -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 + -dw 0.955e-9 27.4 13.7 94.1 + -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 + -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -dw 1.07e-9 34 2.08 13.4 - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 NO3- = NO3- -gamma 3.0 0 -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 AmmH+ = AmmH+ -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0 -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 F- = F- -gamma 3.5 0 - -dw 1.46e-9 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ -gamma 6.0 0 -dw 1.03e-9 80 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 Br- = Br- -gamma 3.0 0 -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 Zn+2 = Zn+2 -gamma 5.0 0 -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 Cd+2 = Cd+2 -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0 -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 @@ -175,19 +188,20 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -198,19 +212,25 @@ H2O = OH- + H+ -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 + -dw 1.18e-9 -163 0.808 -3.18 + -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 + -viscosity 0 0.670 1.03e-2 0 0 0 1.082 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 @@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -242,7 +262,7 @@ HS- + H+ = H2S -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 @@ -272,16 +292,19 @@ AmmH+ = Amm + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2 + -Vm 6.69 2.8 3.58 -2.88 1.43 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 - +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11 - -Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2 + -log_k 1.1 + -delta_h -0.47 kcal + -gamma 0 0 + -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 + -dw 7.46e-10 + -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -302,17 +325,17 @@ PO4-3 + H+ = HPO4-2 -delta_h -3.530 kcal -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0 -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 PO4-3 + 3H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 # ref. 2 + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal @@ -372,16 +395,25 @@ Mg+2 + CO3-2 = MgCO3 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 - -delta_h -2.771 kcal + -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4.0 0 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.37 - -delta_h 4.550 kcal - -dw 4.45e-10 - -Vm 2.4 -0.97 6.1 -2.74 # est'd + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -400,40 +432,43 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -Na+ + CO3-2 = NaCO3- - -log_k 1.27 - -delta_h 8.91 kcal - -dw 1.2e-9 0 1e-10 1e-10 - -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 -Na+ + HCO3- = NaHCO3 - -log_k -0.25 - -delta_h -1 kcal - -dw 6.73e-10 - -Vm 0.431 # ref. 1 +# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +# Na+ + HCO3- = NaHCO3 + # -log_k 0.14 + # -delta_h -6.71 kcal + # -dw 6.73e-10 -400 1e-10 1e-10 + # -Vm 6.22 + # -viscosity -0.026 0 0 -0.182 0 3 Na+ + SO4-2 = NaSO4- - -log_k 0.7 - -delta_h 1.120 kcal - -gamma 5.4 0 - -dw 1.33e-9 0 0.57 1e-10 - -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.85 - -delta_h 2.250 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0 - -dw 1.5e-9 0 1e-10 1e10 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal @@ -451,7 +486,7 @@ Fe+2 + HCO3- = FeHCO3+ Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal - -Vm -13 0 123 # ref. 2 + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 @@ -539,14 +574,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+ Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 - -Vm 1e-5 0 144 # ref. 2 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ @@ -555,11 +590,11 @@ Mn+2 + HCO3- = MnHCO3+ Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 # ref. 2 + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 # ref. 2 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0 @@ -572,7 +607,7 @@ Al+3 + H2O = AlOH+2 + H+ -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal @@ -691,11 +726,11 @@ Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 # ref. 2 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal @@ -723,7 +758,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 # ref. 2 + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ @@ -739,21 +774,21 @@ Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 @@ -769,10 +804,10 @@ Zn+2 + HCO3- = ZnHCO3+ Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 # ref. 2 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 @@ -798,19 +833,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+ Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 # ref. 2 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 @@ -820,10 +855,10 @@ Cd+2 + HCO3- = CdHCO3+ Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 # ref. 2 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -905,7 +940,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 @@ -917,7 +952,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 @@ -967,6 +1002,35 @@ Barite -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 @@ -1131,9 +1195,7 @@ CO2(g) H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 - -P_c 217.60 - -Omega 0.344 + -T_c 647.3; -P_c 217.60; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 @@ -1155,12 +1217,12 @@ H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 Amm(g) Amm = Amm @@ -1183,13 +1245,13 @@ Ntg(g) Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 @@ -1827,15 +1889,28 @@ END # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with diff --git a/phreeqc.dat b/phreeqc.dat index 9e69a1875..4883650d0 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,6 +1,5 @@ -# PHREEQC.DAT for calculating pressure dependence of reactions, with -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES @@ -40,7 +39,7 @@ N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N -N(-3) NH4+ 0 N 14.0067 +N(-3) NH4+ 0 N 14.0067 #Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2.0 P 30.9738 @@ -64,38 +63,43 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 Na+ = Na+ -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 Fe+2 = Fe+2 -gamma 6.0 0 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Mn+2 = Mn+2 -gamma 6.0 0 -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 Al+3 = Al+3 -gamma 9.0 0 -dw 0.559e-9 @@ -103,12 +107,14 @@ Al+3 = Al+3 Ba+2 = Ba+2 -gamma 5.0 0 -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 Sr+2 = Sr+2 -gamma 5.260 0.121 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -116,56 +122,63 @@ Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 0 1.12 2.84 - -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 + -dw 0.955e-9 27.4 13.7 94.1 + -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 + -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -dw 1.07e-9 34 2.08 13.4 - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 NO3- = NO3- -gamma 3.0 0 -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 #AmmH+ = AmmH+ # -gamma 2.5 0 # -dw 1.98e-9 312 0.95 4.53 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0 -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 F- = F- -gamma 3.5 0 - -dw 1.46e-9 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ -gamma 6.0 0 -dw 1.03e-9 80 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 Br- = Br- -gamma 3.0 0 -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 Zn+2 = Zn+2 -gamma 5.0 0 -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 Cd+2 = Cd+2 -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0 -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 @@ -175,19 +188,20 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -198,19 +212,25 @@ H2O = OH- + H+ -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 + -dw 1.18e-9 -163 0.808 -3.18 + -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 + -viscosity 0 0.670 1.03e-2 0 0 0 1.082 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 @@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -242,7 +262,7 @@ HS- + H+ = H2S -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 @@ -267,29 +287,34 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -delta_h -312.130 kcal -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 +#AmmH+ = Amm + H+ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2 + -Vm 6.69 2.8 3.58 -2.88 1.43 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 - +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11 - -Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2 + -log_k 1.1 + -delta_h -0.47 kcal + -gamma 0 0 + -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 + -dw 7.46e-10 + -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -310,17 +335,17 @@ PO4-3 + H+ = HPO4-2 -delta_h -3.530 kcal -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0 -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 PO4-3 + 3H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 # ref. 2 + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal @@ -380,16 +405,25 @@ Mg+2 + CO3-2 = MgCO3 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 - -delta_h -2.771 kcal + -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4.0 0 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.37 - -delta_h 4.550 kcal - -dw 4.45e-10 - -Vm 2.4 -0.97 6.1 -2.74 # est'd + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -408,40 +442,43 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -Na+ + CO3-2 = NaCO3- - -log_k 1.27 - -delta_h 8.91 kcal - -dw 1.2e-9 0 1e-10 1e-10 - -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 -Na+ + HCO3- = NaHCO3 - -log_k -0.25 - -delta_h -1 kcal - -dw 6.73e-10 - -Vm 0.431 # ref. 1 +# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +# Na+ + HCO3- = NaHCO3 + # -log_k 0.14 + # -delta_h -6.71 kcal + # -dw 6.73e-10 -400 1e-10 1e-10 + # -Vm 6.22 + # -viscosity -0.026 0 0 -0.182 0 3 Na+ + SO4-2 = NaSO4- - -log_k 0.7 - -delta_h 1.120 kcal - -gamma 5.4 0 - -dw 1.33e-9 0 0.57 1e-10 - -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.85 - -delta_h 2.250 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0 - -dw 1.5e-9 0 1e-10 1e10 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal @@ -459,7 +496,7 @@ Fe+2 + HCO3- = FeHCO3+ Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal - -Vm -13 0 123 # ref. 2 + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 @@ -547,14 +584,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+ Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 - -Vm 1e-5 0 144 # ref. 2 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ @@ -563,11 +600,11 @@ Mn+2 + HCO3- = MnHCO3+ Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 # ref. 2 + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 # ref. 2 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0 @@ -580,7 +617,7 @@ Al+3 + H2O = AlOH+2 + H+ -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal @@ -699,11 +736,11 @@ Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 # ref. 2 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal @@ -731,7 +768,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 # ref. 2 + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ @@ -747,21 +784,21 @@ Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 @@ -777,10 +814,10 @@ Zn+2 + HCO3- = ZnHCO3+ Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 # ref. 2 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 @@ -806,19 +843,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+ Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 # ref. 2 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 @@ -828,10 +865,10 @@ Cd+2 + HCO3- = CdHCO3+ Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 # ref. 2 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -913,7 +950,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 @@ -925,7 +962,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 @@ -975,6 +1012,35 @@ Barite -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 @@ -1139,9 +1205,7 @@ CO2(g) H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 - -P_c 217.60 - -Omega 0.344 + -T_c 647.3; -P_c 217.60; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 @@ -1163,12 +1227,12 @@ H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 #Amm(g) # Amm = Amm @@ -1193,13 +1257,13 @@ Ntg(g) Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 @@ -1838,15 +1902,28 @@ END # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with diff --git a/pitzer.dat b/pitzer.dat index 138b78c8e..87fd70953 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,8 +1,7 @@ -# Pitzer.DAT for calculating pressure dependence of reactions -# and temperature dependence to 200 °C. With -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using +# diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. + SOLUTION_MASTER_SPECIES Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 B B(OH)3 0 B 10.81 @@ -37,54 +36,66 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 e- = e- H2O = H2O Li+ = Li+ -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 Na+ = Na+ -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 + -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 Mg+2 = Mg+2 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 Sr+2 = Sr+2 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 Ba+2 = Ba+2 -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 Mn+2 = Mn+2 -dw 0.688e-9 -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 Fe+2 = Fe+2 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Cl- = Cl- -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 - -dw 0.955e-9 0 1.12 2.84 - -Vm 4.91 0 0 -5.41 4.76 0 0.386 89.7 -1.57e-2 1 # ref. 1 + -dw 0.955e-9 225 1.002 3.96 + -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 SO4-2 = SO4-2 - -dw 1.07e-9 34 4.46 25.9 - -Vm -7.77 43.17 141.1 -42.45 3.794 0 4.97 26.5 -5.77e-2 0.45 # ref. 1 + -dw 1.07e-9 138 3.95 25.9 + -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 + -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 B(OH)3 = B(OH)3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt Br- = Br- -dw 2.01e-9 258 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -97,36 +108,38 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH CO3-2 + H+ = HCO3- log_k 10.3393 delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.54 0 -11.7 0 1.6 0 0 116 0 1 # ref. 1 + -dw 1.18e-9 -79.0 0.956 -3.29 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -viscosity 0 0.633 7.2e-3 0 0 0 1.087 CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 SO4-2 + H+ = HSO4- log_k 1.979 delta_h 4.91 kcal -analytic -5.3585 0.0183412 557.2461 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal @@ -240,7 +253,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 log_k -8.406 delta_h -2.297 kcal - -analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O @@ -271,7 +284,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.09 delta_h -9.436 kcal - -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. + -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat @@ -481,11 +494,11 @@ Ntg(g) T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 Mtg(g) Mtg = Mtg - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 PITZER -B0 @@ -676,7 +689,7 @@ PITZER Cl- CO2 -0.005 Cl- H2Sg -0.005 Cl- (H2Sg)2 -0.005 - CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C + CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C CO2 HSO4- -0.003 CO2 K+ 0.051 CO2 Mg+2 0.183 @@ -980,18 +993,31 @@ END # W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 5. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. -# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71. # http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files # for the high P,T Pitzer model and improvements for Calcite. # ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 5: Appelo and Parkhurst in prep., for parameters see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with