diff --git a/Amm.dat b/Amm.dat index e40c6bb20..569be7eff 100644 --- a/Amm.dat +++ b/Amm.dat @@ -4,1007 +4,1005 @@ SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 NO3 -N(+3) NO2- 0 NO2 -N(0) N2 0 N -# N(-3) NH4+ NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 NO3 +N(+3) NO2- 0 NO2 +N(0) N2 0 N +# N(-3) NH4+ NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 + -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 + -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -109 17 NO3- = NO3- -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 104 1.11 AmmH+ = AmmH+ -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -dw 1.18e-9 -182 0.351 -4.94 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1023,176 +1021,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1210,18 +1208,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1232,7 +1230,7 @@ CH4(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 Amm(g) Amm = Amm - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1255,151 +1253,151 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1410,24 +1408,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1436,13 +1434,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1451,37 +1449,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1490,13 +1488,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1511,51 +1509,209 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +CALCULATE_VALUES + +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + RATES ########### @@ -1564,12 +1720,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1582,7 +1738,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1604,25 +1760,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1641,9 +1797,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1654,9 +1810,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1676,28 +1832,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1716,9 +1872,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1729,9 +1885,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1745,7 +1901,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1776,20 +1932,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1805,16 +1961,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1822,7 +1978,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1838,12 +1994,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1858,6 +2014,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1876,36 +2053,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1913,7 +2090,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/Concrete_PHR.dat b/Concrete_PHR.dat new file mode 100644 index 000000000..ded8898f6 --- /dev/null +++ b/Concrete_PHR.dat @@ -0,0 +1,158 @@ +# Concrete minerals +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_phr.dat + +PRINT; -reset false + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +SO4-AFem # Lothenbach 2019 + Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -31.57; -Vm 321 +CO3-AFem # Lothenbach 2019 + Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + -log_k -34.59; -Vm 292 +CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 şC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 şC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 şC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Fe # Lothenbach 2019 + (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH- + -log_k -26.3; -Vm 155 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 şC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270. +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/Concrete_PZ.dat b/Concrete_PZ.dat new file mode 100644 index 000000000..69745ec43 --- /dev/null +++ b/Concrete_PZ.dat @@ -0,0 +1,195 @@ +# Concrete minerals for use with +# DATABASE c:\phreeqc\database\pitzer.dat +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_pz.dat + +PRINT; -reset false + +SOLUTION_MASTER_SPECIES +Al Al(OH)4- 0 Al 26.9815 +H(0) H2 0 H +O(0) O2 0 O +SOLUTION_SPECIES +Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959 +2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9 +2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9 + +PITZER # Using data from Weskolowski, 1992, GCA +#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski. +-B0 + Al(OH)4- K+ -0.0669 0 0 8.24e-3 + Al(OH)4- Na+ -0.0289 0 0 1.18e-3 +-B1 + Al(OH)4- K+ 0.668 0 0 -1.93e-2 + Al(OH)4- Na+ 0.461 0 0 -2.33e-3 +-C0 + Al(OH)4- K+ 0.0499 0 0 -3.63e-3 + Al(OH)4- Na+ 0.0073 0 0 -1.56e-4 +-THETA + Al(OH)4- Cl- -0.0233 0 0 -8.11e-4 + Al(OH)4- OH- 0.0718 0 0 -7.29e-4 + # Al(OH)4- SO4-2 -0.012 +-PSI + Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4 + Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4 + Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4 + Al(OH)4- OH- K+ 0 0 0 0 + Al(OH)4- K+ Na+ 0 0 0 0 +END + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +O2(g) + O2 = O2; -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +H2(g) + H2 = H2; -log_k -3.1050 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +# No Fe(OH)4- in Pitzer... +# SO4-AFem # Lothenbach 2019 + # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + # -log_k -31.57; -Vm 321 +# CO3-AFem # Lothenbach 2019 + # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + # -log_k -34.59; -Vm 292 +# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + # -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 şC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 şC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 şC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 şC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270 +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/kinetic_rates.dat b/kinetic_rates.dat new file mode 100644 index 000000000..6f9ae3e6f --- /dev/null +++ b/kinetic_rates.dat @@ -0,0 +1,152 @@ +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +CALCULATE_VALUES +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end diff --git a/phreeqc.dat b/phreeqc.dat index 65c1656f4..d632cbd49 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -4,1016 +4,1014 @@ SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N -N(0) N2 0 N +N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 + -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 + -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -109 17 NO3- = NO3- -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 -# -dw 1.98e-9 312 0.95 4.53 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 -#AmmH+ = Amm + H+ + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.220 +#AmmH+ = Amm + H+ NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1032,176 +1030,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1219,18 +1217,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1243,7 +1241,7 @@ CH4(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1266,152 +1264,152 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1422,24 +1420,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1448,13 +1446,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1463,37 +1461,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1502,13 +1500,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1523,51 +1521,209 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +CALCULATE_VALUES + +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + RATES ########### @@ -1576,12 +1732,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1594,7 +1750,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1616,25 +1772,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1653,9 +1809,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1666,9 +1822,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1688,28 +1844,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1728,9 +1884,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1741,9 +1897,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1757,7 +1913,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1788,20 +1944,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1817,16 +1973,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1834,7 +1990,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1850,12 +2006,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1870,6 +2026,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1888,36 +2065,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1925,7 +2102,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/pitzer.dat b/pitzer.dat index 69274d1d5..4d86d0da2 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -3,187 +3,190 @@ # Details are given at the end of this file. SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Br Br- 0 Br 79.904 -C CO3-2 2 HCO3 12.0111 -C(4) CO3-2 2 HCO3 12.0111 -Ca Ca+2 0 Ca 40.08 -Cl Cl- 0 Cl 35.453 -E e- 0 0.0 0.0 -Fe Fe+2 0 Fe 55.847 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Br Br- 0 Br 79.904 +C CO3-2 2 HCO3 12.0111 +C(4) CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 Ca 40.08 +Cl Cl- 0 Cl 35.453 +E e- 0 0.0 0.0 +Fe Fe+2 0 Fe 55.847 H H+ -1 H 1.008 H(1) H+ -1 0.0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Na Na+ 0 Na 22.9898 -O H2O 0 O 16.00 -O(-2) H2O 0 0.0 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -Si H4SiO4 0 SiO2 28.0843 -Sr Sr+2 0 Sr 87.62 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Na Na+ 0 Na 22.9898 +O H2O 0 O 16.00 +O(-2) H2O 0 0.0 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +Si H4SiO4 0 SiO2 28.0843 +Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0.0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # Oxygen gas +Mtg Mtg 0.0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O + -dw 2.299e-9 -254 Li+ = Li+ - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 - -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -dw 0.794e-9 161 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 Mn+2 = Mn+2 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -dw 0.688e-9 Fe+2 = Fe+2 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Cl- = Cl- - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 - -dw 0.955e-9 225 1.002 3.96 - -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 + -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 - -dw 1.07e-9 138 3.95 25.9 - -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 - -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 + -Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786 + -viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248 + -dw 1.07e-9 -68 0.3946 0.9106 0.8941 B(OH)3 = B(OH)3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt Br- = Br- - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -dw 2.01e-9 139 2.949 0 1.321 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- - log_k 10.3393 - delta_h -3.561 kcal + log_k 10.3393; delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 -79.0 0.956 -3.29 - -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.6767 - delta_h -5.738 kcal + log_k 16.6767 + delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - log_k 1.979 - delta_h 4.91 kcal - -analytic -5.3585 0.0183412 557.2461 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 + -dw 0.731e-9 1e3 7.082 3.0 0.860 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ - log_k -9.239 + log_k -9.239 delta_h 0 kcal 3B(OH)3 = B3O3(OH)4- + 2H2O + H+ - log_k -7.528 + log_k -7.528 delta_h 0 kcal 4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ - log_k -16.134 + log_k -16.134 delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ - log_k -7.589 + log_k -7.589 delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ - log_k -7.840 + log_k -7.840 delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 - # log_k 3.151 + # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 - # -dw 4.46e-10 # complexes: calc'd with the Pikal formula - # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + # -dw 4.46e-10 # complexes: calc'd with the Pikal formula + # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ - log_k -11.809 + log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.928 + log_k 2.928 delta_h 2.535 kcal - -analytic -32.225 0.0 1093.486 12.72433 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -analytic -32.225 0.0 1093.486 12.72433 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0; -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 @@ -191,22 +194,22 @@ H4SiO4 = H2SiO4-2 + 2 H+ PHASES Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat - log_k 45.23 + log_k 45.23 -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.362 -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 - -Vm 46.1 # 136.14 / 2.95 + -Vm 46.1 # 136.14 / 2.95 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat - log_k 66.80 + log_k 66.80 -delta_H -483 kJ/mol Vm 269 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 + log_k 477.19 -delta_H -3364 kJ/mol Vm 1745 Aragonite @@ -214,48 +217,48 @@ Aragonite log_k -8.336 delta_h -2.589 kcal -analytic -171.8607 -.077993 2903.293 71.595 - -Vm 34.04 + -Vm 34.04 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 - -Vm 65.5 + -Vm 65.5 Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat - log_k 19.66 + log_k 19.66 -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.97; delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 - -Vm 52.9 + -Vm 52.9 Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O - log_k 4.455 + log_k 4.455 -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O - log_k -2.347 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + log_k -2.347 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite Mg(OH)2 = Mg++ + 2 OH- - log_k -10.88 + log_k -10.88 -delta_H 4.85 kcal/mol Vm 24.6 Burkeite Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ - log_k -0.772 + log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.406 + log_k -8.406 delta_h -2.297 kcal -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 - -Vm 36.9 + -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O log_k 4.35; -delta_h 1.17 @@ -263,105 +266,105 @@ Carnallite Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.630 + log_k -6.630 -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 - -Vm 46.4 + -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55; -delta_h 4.720 kcal - -Vm 23.1 + -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 110 + -Vm 110 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat - log_k 20.96 + log_k 20.96 -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 + log_k -17.09 delta_h -9.436 kcal -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. - -Vm 64.5 + -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat - log_k 11.33 + log_k 11.33 -delta_H -83 kJ/mol Vm 31.3 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.881 + log_k -1.881 -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat - log_k 27.86 + log_k 27.86 -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O - log_k -9.421 + log_k -9.421 Glaserite NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 log_k -3.803; -delta_h 25 - -Vm 123 + -Vm 123 Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 - log_k -5.31 + log_k -5.31 -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O log_k -29.5 -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 - -Vm 295.9 + -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58; -delta_h -0.109 kcal -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 - -Vm 73.9 + -Vm 73.9 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 - -Vm 27.1 + -Vm 27.1 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.635 + log_k -1.635 -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 Vm 132 Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat - log_k 10.30 + log_k 10.30 -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O - log_k -0.193 + log_k -0.193 Kalicinite KHCO3 = K+ + H+ + CO3-2 - log_k -9.94 # Harvie et al., 1984 + log_k -9.94 # Harvie et al., 1984 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -0.123 + log_k -0.123 -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O - log_k -5.672 + log_k -5.672 Leonhardite MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O - log_k -0.887 + log_k -0.887 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O - log_k -3.979 + log_k -3.979 Magnesite MgCO3 = CO3-2 + Mg+2 - log_k -7.834 + log_k -7.834 delta_h -6.169 Vm 28.3 MgCl2_2H2O @@ -376,51 +379,51 @@ Mirabilite Vm 216 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ - log_k -10.806 + log_k -10.806 Nahcolite NaHCO3 = CO3-2 + H+ + Na+ - log_k -10.742 + log_k -10.742 Vm 38.0 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O - log_k -0.825 + log_k -0.825 Nesquehonite MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O - log_k -5.167 + log_k -5.167 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O - log_k -1.285 + log_k -1.285 Pirssonite Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O - log_k -9.234 + log_k -9.234 Polyhalite K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O - log_k -13.744 + log_k -13.744 Vm 218 Portlandite Ca(OH)2 = Ca+2 + 2 OH- - log_k -5.190 + log_k -5.190 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98; -delta_h 5.990 kcal - -Vm 22.67 + -Vm 22.67 Schoenite K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O - log_k -4.328 + log_k -4.328 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 18.66 - -Vm 162 + -Vm 162 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 15.760 -delta_h -10.700 kcal - -Vm 154 + -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71; -delta_h 3.340 kcal -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 - -Vm 25.7 + -Vm 25.7 Sylvite KCl = K+ + Cl- log_k 0.90; -delta_h 8 @@ -429,42 +432,42 @@ Sylvite Syngenite K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O log_k -6.43; -delta_h -32.65 # ref. 3 - -Vm 127.3 + -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat -log_k 21.399 -delta_h -46.352 kcal - -Vm 140 + -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -Vm 52.9 Trona Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O - log_k -11.384 + log_k -11.384 Vm 106 Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O - log_k 12.464 + log_k 12.464 Vm 223 Boric_acid,s B(OH)3 = B(OH)3 - log_k -0.030 + log_k -0.030 KB5O8:4H2O KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ - log_k 4.671 + log_k 4.671 K2B4O7:4H2O K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ - log_k 13.906 + log_k 13.906 NaBO2:4H2O NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O - log_k 9.568 + log_k 9.568 NaB5O8:5H2O NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ - log_k 5.895 + log_k 5.895 Teepleite Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O - log_k 10.840 + log_k 10.840 CO2(g) CO2 = CO2 log_k -1.468 @@ -778,7 +781,7 @@ EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0.0 Na+ + X- = NaX log_k 0.0 @@ -846,7 +849,7 @@ SURFACE_SPECIES log_k -8.93 # = -pKa2,int ############################################### -# CATIONS # +# CATIONS # ############################################### # # Cations from table 10.1 or 10.5 @@ -871,7 +874,7 @@ SURFACE_SPECIES log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Derived constants table 10.5 # @@ -880,10 +883,10 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 @@ -892,17 +895,17 @@ SURFACE_SPECIES # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.98 + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ - log_k -11.55 + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + log_k -11.55 ############################################### -# ANIONS # +# ANIONS # ############################################### # # Anions from table 10.6 @@ -975,14 +978,14 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)