From 8b8d0b8c8a6d0eb6cfb2fe988938a106ee8b9633 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Wed, 17 Apr 2024 00:20:40 +0000 Subject: [PATCH] Squashed 'database/' changes from 22eb9506..bae20ea7 bae20ea7 Merge pull request #45 from dlparkhurst/viscosity d18452f3 All test cases run. Fixed CALCULATED_VALUES and RATES in Amm.dat and phreeqc.dat 5c6d1c5a Tony's changes Mar 15, 2024 39130824 Tony's changes Mar 15, 2024 bc1f8f86 Tony's changes Mar 15, 2024 3318883e Tony's Mar 15, changes. 77038cb6 modified NH3 from Tony's Amm.dat e510f752 Tony's changes 2/12/2024 git-subtree-dir: database git-subtree-split: bae20ea7e849a914e6abea15c71cdad69db68db7 --- Amm.dat | 1935 +++++++++++++++++++++++++-------------------- Concrete_PHR.dat | 158 ++++ Concrete_PZ.dat | 195 +++++ kinetic_rates.dat | 152 ++++ phreeqc.dat | 1933 ++++++++++++++++++++++++-------------------- pitzer.dat | 375 ++++----- 6 files changed, 2805 insertions(+), 1943 deletions(-) create mode 100644 Concrete_PHR.dat create mode 100644 Concrete_PZ.dat create mode 100644 kinetic_rates.dat diff --git a/Amm.dat b/Amm.dat index e40c6bb20..569be7eff 100644 --- a/Amm.dat +++ b/Amm.dat @@ -4,1007 +4,1005 @@ SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 NO3 -N(+3) NO2- 0 NO2 -N(0) N2 0 N -# N(-3) NH4+ NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 NO3 +N(+3) NO2- 0 NO2 +N(0) N2 0 N +# N(-3) NH4+ NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 + -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 + -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -109 17 NO3- = NO3- -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 104 1.11 AmmH+ = AmmH+ -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -dw 1.18e-9 -182 0.351 -4.94 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1023,176 +1021,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1210,18 +1208,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1232,7 +1230,7 @@ CH4(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 Amm(g) Amm = Amm - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1255,151 +1253,151 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1410,24 +1408,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1436,13 +1434,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1451,37 +1449,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1490,13 +1488,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1511,51 +1509,209 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +CALCULATE_VALUES + +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + RATES ########### @@ -1564,12 +1720,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1582,7 +1738,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1604,25 +1760,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1641,9 +1797,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1654,9 +1810,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1676,28 +1832,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1716,9 +1872,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1729,9 +1885,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1745,7 +1901,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1776,20 +1932,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1805,16 +1961,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1822,7 +1978,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1838,12 +1994,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1858,6 +2014,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1876,36 +2053,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1913,7 +2090,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/Concrete_PHR.dat b/Concrete_PHR.dat new file mode 100644 index 000000000..ded8898f6 --- /dev/null +++ b/Concrete_PHR.dat @@ -0,0 +1,158 @@ +# Concrete minerals +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_phr.dat + +PRINT; -reset false + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +SO4-AFem # Lothenbach 2019 + Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -31.57; -Vm 321 +CO3-AFem # Lothenbach 2019 + Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + -log_k -34.59; -Vm 292 +CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 şC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 şC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 şC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Fe # Lothenbach 2019 + (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH- + -log_k -26.3; -Vm 155 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 şC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270. +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/Concrete_PZ.dat b/Concrete_PZ.dat new file mode 100644 index 000000000..69745ec43 --- /dev/null +++ b/Concrete_PZ.dat @@ -0,0 +1,195 @@ +# Concrete minerals for use with +# DATABASE c:\phreeqc\database\pitzer.dat +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_pz.dat + +PRINT; -reset false + +SOLUTION_MASTER_SPECIES +Al Al(OH)4- 0 Al 26.9815 +H(0) H2 0 H +O(0) O2 0 O +SOLUTION_SPECIES +Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959 +2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9 +2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9 + +PITZER # Using data from Weskolowski, 1992, GCA +#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski. +-B0 + Al(OH)4- K+ -0.0669 0 0 8.24e-3 + Al(OH)4- Na+ -0.0289 0 0 1.18e-3 +-B1 + Al(OH)4- K+ 0.668 0 0 -1.93e-2 + Al(OH)4- Na+ 0.461 0 0 -2.33e-3 +-C0 + Al(OH)4- K+ 0.0499 0 0 -3.63e-3 + Al(OH)4- Na+ 0.0073 0 0 -1.56e-4 +-THETA + Al(OH)4- Cl- -0.0233 0 0 -8.11e-4 + Al(OH)4- OH- 0.0718 0 0 -7.29e-4 + # Al(OH)4- SO4-2 -0.012 +-PSI + Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4 + Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4 + Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4 + Al(OH)4- OH- K+ 0 0 0 0 + Al(OH)4- K+ Na+ 0 0 0 0 +END + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +O2(g) + O2 = O2; -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +H2(g) + H2 = H2; -log_k -3.1050 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +# No Fe(OH)4- in Pitzer... +# SO4-AFem # Lothenbach 2019 + # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + # -log_k -31.57; -Vm 321 +# CO3-AFem # Lothenbach 2019 + # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + # -log_k -34.59; -Vm 292 +# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + # -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 şC + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 şC + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 şC + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 şC + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270 +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/kinetic_rates.dat b/kinetic_rates.dat new file mode 100644 index 000000000..6f9ae3e6f --- /dev/null +++ b/kinetic_rates.dat @@ -0,0 +1,152 @@ +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +CALCULATE_VALUES +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end diff --git a/phreeqc.dat b/phreeqc.dat index 65c1656f4..d632cbd49 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -4,1016 +4,1014 @@ SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N -N(0) N2 0 N +N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 + -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. -Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 + -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -109 17 NO3- = NO3- -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 -# -dw 1.98e-9 312 0.95 4.53 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 -#AmmH+ = Amm + H+ + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.220 +#AmmH+ = Amm + H+ NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1032,176 +1030,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1219,18 +1217,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1243,7 +1241,7 @@ CH4(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1266,152 +1264,152 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1422,24 +1420,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1448,13 +1446,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1463,37 +1461,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1502,13 +1500,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1523,51 +1521,209 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +CALCULATE_VALUES + +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + RATES ########### @@ -1576,12 +1732,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1594,7 +1750,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1616,25 +1772,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1653,9 +1809,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1666,9 +1822,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1688,28 +1844,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1728,9 +1884,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1741,9 +1897,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1757,7 +1913,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1788,20 +1944,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1817,16 +1973,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1834,7 +1990,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1850,12 +2006,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1870,6 +2026,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1888,36 +2065,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1925,7 +2102,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/pitzer.dat b/pitzer.dat index 69274d1d5..4d86d0da2 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -3,187 +3,190 @@ # Details are given at the end of this file. SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Br Br- 0 Br 79.904 -C CO3-2 2 HCO3 12.0111 -C(4) CO3-2 2 HCO3 12.0111 -Ca Ca+2 0 Ca 40.08 -Cl Cl- 0 Cl 35.453 -E e- 0 0.0 0.0 -Fe Fe+2 0 Fe 55.847 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Br Br- 0 Br 79.904 +C CO3-2 2 HCO3 12.0111 +C(4) CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 Ca 40.08 +Cl Cl- 0 Cl 35.453 +E e- 0 0.0 0.0 +Fe Fe+2 0 Fe 55.847 H H+ -1 H 1.008 H(1) H+ -1 0.0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Na Na+ 0 Na 22.9898 -O H2O 0 O 16.00 -O(-2) H2O 0 0.0 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -Si H4SiO4 0 SiO2 28.0843 -Sr Sr+2 0 Sr 87.62 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Na Na+ 0 Na 22.9898 +O H2O 0 O 16.00 +O(-2) H2O 0 0.0 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +Si H4SiO4 0 SiO2 28.0843 +Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0.0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # Oxygen gas +Mtg Mtg 0.0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O + -dw 2.299e-9 -254 Li+ = Li+ - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 - -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -dw 0.794e-9 161 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 Mn+2 = Mn+2 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -dw 0.688e-9 Fe+2 = Fe+2 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Cl- = Cl- - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 - -dw 0.955e-9 225 1.002 3.96 - -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 + -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 - -dw 1.07e-9 138 3.95 25.9 - -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 - -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 + -Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786 + -viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248 + -dw 1.07e-9 -68 0.3946 0.9106 0.8941 B(OH)3 = B(OH)3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt Br- = Br- - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -dw 2.01e-9 139 2.949 0 1.321 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- - log_k 10.3393 - delta_h -3.561 kcal + log_k 10.3393; delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 -79.0 0.956 -3.29 - -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.6767 - delta_h -5.738 kcal + log_k 16.6767 + delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - log_k 1.979 - delta_h 4.91 kcal - -analytic -5.3585 0.0183412 557.2461 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 + -dw 0.731e-9 1e3 7.082 3.0 0.860 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ - log_k -9.239 + log_k -9.239 delta_h 0 kcal 3B(OH)3 = B3O3(OH)4- + 2H2O + H+ - log_k -7.528 + log_k -7.528 delta_h 0 kcal 4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ - log_k -16.134 + log_k -16.134 delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ - log_k -7.589 + log_k -7.589 delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ - log_k -7.840 + log_k -7.840 delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 - # log_k 3.151 + # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 - # -dw 4.46e-10 # complexes: calc'd with the Pikal formula - # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + # -dw 4.46e-10 # complexes: calc'd with the Pikal formula + # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ - log_k -11.809 + log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.928 + log_k 2.928 delta_h 2.535 kcal - -analytic -32.225 0.0 1093.486 12.72433 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -analytic -32.225 0.0 1093.486 12.72433 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0; -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 @@ -191,22 +194,22 @@ H4SiO4 = H2SiO4-2 + 2 H+ PHASES Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat - log_k 45.23 + log_k 45.23 -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.362 -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 - -Vm 46.1 # 136.14 / 2.95 + -Vm 46.1 # 136.14 / 2.95 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat - log_k 66.80 + log_k 66.80 -delta_H -483 kJ/mol Vm 269 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 + log_k 477.19 -delta_H -3364 kJ/mol Vm 1745 Aragonite @@ -214,48 +217,48 @@ Aragonite log_k -8.336 delta_h -2.589 kcal -analytic -171.8607 -.077993 2903.293 71.595 - -Vm 34.04 + -Vm 34.04 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 - -Vm 65.5 + -Vm 65.5 Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat - log_k 19.66 + log_k 19.66 -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.97; delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 - -Vm 52.9 + -Vm 52.9 Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O - log_k 4.455 + log_k 4.455 -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O - log_k -2.347 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + log_k -2.347 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite Mg(OH)2 = Mg++ + 2 OH- - log_k -10.88 + log_k -10.88 -delta_H 4.85 kcal/mol Vm 24.6 Burkeite Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ - log_k -0.772 + log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.406 + log_k -8.406 delta_h -2.297 kcal -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 - -Vm 36.9 + -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O log_k 4.35; -delta_h 1.17 @@ -263,105 +266,105 @@ Carnallite Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.630 + log_k -6.630 -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 - -Vm 46.4 + -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55; -delta_h 4.720 kcal - -Vm 23.1 + -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 110 + -Vm 110 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat - log_k 20.96 + log_k 20.96 -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 + log_k -17.09 delta_h -9.436 kcal -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. - -Vm 64.5 + -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat - log_k 11.33 + log_k 11.33 -delta_H -83 kJ/mol Vm 31.3 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.881 + log_k -1.881 -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat - log_k 27.86 + log_k 27.86 -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O - log_k -9.421 + log_k -9.421 Glaserite NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 log_k -3.803; -delta_h 25 - -Vm 123 + -Vm 123 Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 - log_k -5.31 + log_k -5.31 -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O log_k -29.5 -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 - -Vm 295.9 + -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58; -delta_h -0.109 kcal -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 - -Vm 73.9 + -Vm 73.9 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 - -Vm 27.1 + -Vm 27.1 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.635 + log_k -1.635 -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 Vm 132 Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat - log_k 10.30 + log_k 10.30 -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O - log_k -0.193 + log_k -0.193 Kalicinite KHCO3 = K+ + H+ + CO3-2 - log_k -9.94 # Harvie et al., 1984 + log_k -9.94 # Harvie et al., 1984 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -0.123 + log_k -0.123 -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O - log_k -5.672 + log_k -5.672 Leonhardite MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O - log_k -0.887 + log_k -0.887 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O - log_k -3.979 + log_k -3.979 Magnesite MgCO3 = CO3-2 + Mg+2 - log_k -7.834 + log_k -7.834 delta_h -6.169 Vm 28.3 MgCl2_2H2O @@ -376,51 +379,51 @@ Mirabilite Vm 216 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ - log_k -10.806 + log_k -10.806 Nahcolite NaHCO3 = CO3-2 + H+ + Na+ - log_k -10.742 + log_k -10.742 Vm 38.0 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O - log_k -0.825 + log_k -0.825 Nesquehonite MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O - log_k -5.167 + log_k -5.167 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O - log_k -1.285 + log_k -1.285 Pirssonite Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O - log_k -9.234 + log_k -9.234 Polyhalite K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O - log_k -13.744 + log_k -13.744 Vm 218 Portlandite Ca(OH)2 = Ca+2 + 2 OH- - log_k -5.190 + log_k -5.190 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98; -delta_h 5.990 kcal - -Vm 22.67 + -Vm 22.67 Schoenite K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O - log_k -4.328 + log_k -4.328 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 18.66 - -Vm 162 + -Vm 162 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 15.760 -delta_h -10.700 kcal - -Vm 154 + -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71; -delta_h 3.340 kcal -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 - -Vm 25.7 + -Vm 25.7 Sylvite KCl = K+ + Cl- log_k 0.90; -delta_h 8 @@ -429,42 +432,42 @@ Sylvite Syngenite K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O log_k -6.43; -delta_h -32.65 # ref. 3 - -Vm 127.3 + -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat -log_k 21.399 -delta_h -46.352 kcal - -Vm 140 + -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -Vm 52.9 Trona Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O - log_k -11.384 + log_k -11.384 Vm 106 Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O - log_k 12.464 + log_k 12.464 Vm 223 Boric_acid,s B(OH)3 = B(OH)3 - log_k -0.030 + log_k -0.030 KB5O8:4H2O KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ - log_k 4.671 + log_k 4.671 K2B4O7:4H2O K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ - log_k 13.906 + log_k 13.906 NaBO2:4H2O NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O - log_k 9.568 + log_k 9.568 NaB5O8:5H2O NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ - log_k 5.895 + log_k 5.895 Teepleite Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O - log_k 10.840 + log_k 10.840 CO2(g) CO2 = CO2 log_k -1.468 @@ -778,7 +781,7 @@ EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0.0 Na+ + X- = NaX log_k 0.0 @@ -846,7 +849,7 @@ SURFACE_SPECIES log_k -8.93 # = -pKa2,int ############################################### -# CATIONS # +# CATIONS # ############################################### # # Cations from table 10.1 or 10.5 @@ -871,7 +874,7 @@ SURFACE_SPECIES log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Derived constants table 10.5 # @@ -880,10 +883,10 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 @@ -892,17 +895,17 @@ SURFACE_SPECIES # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.98 + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ - log_k -11.55 + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + log_k -11.55 ############################################### -# ANIONS # +# ANIONS # ############################################### # # Anions from table 10.6 @@ -975,14 +978,14 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)