-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhello_mnist.py
227 lines (183 loc) · 10 KB
/
hello_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from metaflow import FlowSpec, step, Parameter, conda, conda_base, IncludeFile
import struct
def parse_data(np,x_dataset, y_dataset, flatten):
_, num = struct.unpack(">II", y_dataset[:8])
labels = np.frombuffer(y_dataset[8:], dtype=np.int8) #int8
new_labels = np.zeros((num, 10))
new_labels[np.arange(num), labels] = 1
_, num, rows, cols = struct.unpack(">IIII", x_dataset[:16])
imgs = np.frombuffer(x_dataset[16:], dtype=np.uint8).reshape(num, rows, cols) #uint8
imgs = imgs.astype(np.float32) / 255.0
if flatten:
imgs = imgs.reshape([num, -1])
return imgs, new_labels
def read_mnist(np,train_x_raw,train_y_raw,test_x_raw,test_y_raw, flatten=True, num_train=55000):
"""
Read in the mnist dataset, given that the data is stored in path
Return two tuples of numpy arrays
((train_imgs, train_labels), (test_imgs, test_labels))
"""
imgs, labels = parse_data(np,train_x_raw,train_y_raw, flatten)
indices = np.random.permutation(labels.shape[0])
train_idx, val_idx = indices[:num_train], indices[num_train:]
train_img, train_labels = imgs[train_idx, :], labels[train_idx, :]
val_img, val_labels = imgs[val_idx, :], labels[val_idx, :]
test = parse_data(np,test_x_raw,test_y_raw, flatten)
return (train_img, train_labels), (val_img, val_labels), test
def script_path(filename):
"""
A convenience function to get the absolute path to a file in this
tutorial's directory. This allows the tutorial to be launched from any
directory.
"""
import os
filepath = os.path.join(os.path.dirname(__file__))
return os.path.join(filepath, filename)
def get_python_version():
"""
A convenience function to get the python version used to run this
tutorial. This ensures that the conda environment is created with an
available version of python.
"""
import platform
versions = {'2' : '2.7.15',
'3' : '3.6.9'}
return versions[platform.python_version_tuple()[0]]
# Use the specified version of python for this flow.
@conda_base(python=get_python_version())
class MNISTNeuralNetworkExperimentationFlow(FlowSpec):
"""
Train multiple Iterations of Machine learning models for MNIST Handwritten digit prediction.
Metaflow will help capture the experiments and then understanding the efficiency of training and accuracy for each of the models.
"""
mnist_dataset_train_x_raw = IncludeFile("mnist_dataset_train_x_raw",
help="The path to a mnist training images file.",
default=script_path('data/mnist/train-images-idx3-ubyte'),is_text=False,encoding='UTF-8')
mnist_dataset_train_y_raw = IncludeFile("mnist_dataset_train_y_raw",
help="The path to a mnist training labels file.",
default=script_path('data/mnist/train-labels-idx1-ubyte'),is_text=False,encoding='UTF-8')
mnist_dataset_test_x_raw = IncludeFile("mnist_dataset_test_x_raw",
help="The path to a mnist test images file.",
default=script_path('data/mnist/t10k-images-idx3-ubyte'),is_text=False,encoding='UTF-8')
mnist_dataset_test_y_raw = IncludeFile("mnist_dataset_test_y_raw",
help="The path to a mnist test labels file.",
default=script_path('data/mnist/t10k-labels-idx1-ubyte'),is_text=False,encoding='UTF-8')
num_training_examples = Parameter('num_training_examples',help='Number of Training Examples',default=55000)
number_of_epochs = Parameter('number_of_epochs',help='Number of Epochs to Run for the Training Process',default=10)
batch_size = Parameter('batch_size',help='Batch Sizes for the Training Process',default=128)
@conda(libraries={'numpy':'1.18.1'})
@step
def start(self):
"""
Parse the MNIST Dataset into Flattened and None Flattened Data artifacts.
"""
import numpy as np
# $ Collect and create the unflattenned dataset according to the number of examples.
self.train_unflattened,self.val_unflattened,self.test_unflattened = read_mnist(np,self.mnist_dataset_train_x_raw,self.mnist_dataset_train_y_raw,self.mnist_dataset_test_x_raw,self.mnist_dataset_test_y_raw,flatten=False,num_train=self.num_training_examples)
# $ Collect and create the flattenned dataset according to the number of examples.
self.train_flattened,self.val_flattened,self.test_flattened = read_mnist(np,self.mnist_dataset_train_x_raw,self.mnist_dataset_train_y_raw,self.mnist_dataset_test_x_raw,self.mnist_dataset_test_y_raw,flatten=True,num_train=self.num_training_examples)
# $ Train models in parallel with Sequential, Convolutional and Conv Batch Norm Neural Nets.
self.next(self.train_sequential,self.train_convolution,self.train_convolution_batch_norm)
@conda(libraries={'numpy':'1.18.1','tensorflow':'1.4.0'})
@step
def train_sequential(self):
"""
Train sequential Neural Network with with the Set of parameters.
"""
from tensorflow.python.keras.layers import Conv2D,Input,MaxPool2D,Dense,Flatten,MaxPooling2D
from tensorflow.python.keras.models import Sequential
train, val, test = self.train_flattened,self.val_flattened,self.test_flattened
train_X,train_Y = train
test_X,test_Y = test
model = Sequential()
model.add(Dense(128, activation='relu',input_shape=[784])) # fully-connected layer with 128 units and ReLU activation
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax')) # output layer with 10 units and a softmax activation
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy','accuracy'])
history = model.fit(train_X,train_Y, validation_split=0.2, epochs=self.number_of_epochs, batch_size=self.batch_size)
self.history = history.history
self.next(self.join)
@conda(libraries={'numpy':'1.18.1','tensorflow':'1.4.0'})
@step
def train_convolution(self):
"""
Train a Convolutional Neural Network with the Set of parameters.
"""
from tensorflow.python.keras.layers import Conv2D,Input,MaxPool2D,Dense,Flatten,MaxPooling2D
from tensorflow.python.keras.models import Sequential
train, val, test = self.train_unflattened,self.val_unflattened,self.test_unflattened
train_X,train_Y = train
test_X,test_Y = test
train_X = train_X.reshape(self.num_training_examples,28,28,1)
test_X = test_X.reshape(test_X.shape[0],28,28,1)
model = Sequential()
model.add(Conv2D(32,kernel_size=(1,1),activation='relu',input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64,kernel_size=(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128,kernel_size=(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy','accuracy'])
history = model.fit(train_X,train_Y, validation_split=0.2, epochs=self.number_of_epochs, batch_size=self.batch_size)
self.history = history.history
self.next(self.join)
@conda(libraries={'numpy':'1.18.1','tensorflow':'1.4.0'})
@step
def train_convolution_batch_norm(self):
"""
Train a Convolutional Neural Network with Batch Norm and Dropout with the Set of parameters.
"""
from tensorflow.python.keras.layers import Conv2D,Input,MaxPool2D,Dense,Flatten,MaxPooling2D,BatchNormalization,Activation,Dropout
from tensorflow.python.keras.models import Sequential
train, val, test = self.train_unflattened,self.val_unflattened,self.test_unflattened
train_X,train_Y = train
test_X,test_Y = test
train_X = train_X.reshape(self.num_training_examples,28,28,1)
test_X = test_X.reshape(test_X.shape[0],28,28,1)
model = Sequential()
model.add(Conv2D(32,kernel_size=(1,1),use_bias=False,input_shape=(28,28,1)))
model.add(BatchNormalization(axis=3))
model.add(Activation('relu'))
model.add(Conv2D(64,kernel_size=(3,3),use_bias=False))
model.add(BatchNormalization(axis=3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32,kernel_size=(1,1),use_bias=False))
model.add(BatchNormalization(axis=3))
model.add(Activation('relu'))
model.add(Conv2D(64,kernel_size=(3,3),use_bias=False))
model.add(BatchNormalization(axis=3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy','accuracy'])
history = model.fit(train_X,train_Y, validation_split=0.2, epochs=self.number_of_epochs, batch_size=self.batch_size)
self.history = history.history
self.next(self.join)
@conda(libraries={'numpy':'1.18.1','tensorflow':'1.4.0'})
@step
def join(self,inputs):
"""
Join our parallel branches and merge results,
"""
self.history = {
'convolution' : inputs.train_convolution.history,
'sequential' : inputs.train_sequential.history,
'convolution_batch_norm' : inputs.train_convolution_batch_norm.history
}
self.next(self.end)
@step
def end(self):
"""
This is the end step of the Computation
"""
print("Done Computation")
if __name__ == '__main__':
MNISTNeuralNetworkExperimentationFlow()