-
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtest_loop.py
836 lines (698 loc) · 27.8 KB
/
test_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
# Authors: Valentino Constantinou <vc@valentino.io>
# License: Apache 2.0
from PyNomaly import loop
import logging
from typing import Tuple
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
import pandas as pd
import pytest
from sklearn.datasets import load_iris
from sklearn.metrics import roc_auc_score
from sklearn.neighbors import NearestNeighbors
from sklearn.utils import check_random_state
import sys
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# flag to enable or disable NUMBA
NUMBA = False
if NUMBA is False:
logging.info(
"Numba is disabled. Coverage statistics are reflective of "
"testing native Python code. Consider also testing with numba"
" enabled."
)
else:
logging.warning(
"Numba is enabled. Coverage statistics will be impacted (reduced) to"
" due the just-in-time compilation of native Python code."
)
# load the iris dataset
# and randomly permute it
rng = check_random_state(0)
iris = load_iris()
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# fixtures
@pytest.fixture()
def X_n8() -> np.ndarray:
"""
Fixture that generates a small Numpy array with two anomalous values
(last two observations).
:return: a Numpy array.
"""
# Toy sample (the last two samples are outliers):
X = np.array(
[[-2, -1], [-1, -1], [-1, -2], [1, 2], [1, 2], [2, 1], [5, 3], [-4, 2]]
)
return X
@pytest.fixture()
def X_n20_scores() -> Tuple[np.ndarray, np.ndarray]:
"""
Fixture that returns a tuple containing a 20 element numpy array
and the precalculated loOP scores based on that array.
:return: tuple(input_data,exptected_scores)
"""
input_data = np.array(
[
0.02059752,
0.32629926,
0.63036653,
0.94409321,
0.63251097,
0.47598494,
0.80204026,
0.34845067,
0.81556468,
0.89183,
0.25210317,
0.11460502,
0.19953434,
0.36955067,
0.06038041,
0.34527368,
0.56621582,
0.90533649,
0.33773613,
0.71573306,
]
)
expected_scores = np.array(
[
0.6356276742921594,
0.0,
0.0,
0.48490790006974044,
0.0,
0.0,
0.0,
0.0,
0.021728288376168012,
0.28285086151683225,
0.0,
0.18881886507113213,
0.0,
0.0,
0.45350246469681843,
0.0,
0.07886635748113013,
0.3349068501560546,
0.0,
0.0,
]
)
return (input_data, expected_scores)
@pytest.fixture()
def X_n120() -> np.ndarray:
"""
Fixture that generates a Numpy array with 120 observations. Each
observation contains two float values.
:return: a Numpy array.
"""
# Generate train/test data
rng = check_random_state(2)
X = 0.3 * rng.randn(120, 2)
return X
@pytest.fixture()
def X_n140_outliers(X_n120) -> np.ndarray:
"""
Fixture that generates a Numpy array with 140 observations, where the
first 120 observations are "normal" and the last 20 considered anomalous.
:param X_n120: A pytest Fixture that generates the first 120 observations.
:return: A Numpy array.
"""
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
X = np.r_[X_n120, X_outliers]
return X
@pytest.fixture()
def X_n1000() -> np.ndarray:
"""
Fixture that generates a Numpy array with 1000 observations.
:return: A Numpy array.
"""
# Generate train/test data
rng = check_random_state(2)
X = 0.3 * rng.randn(1000, 2)
return X
def test_loop(X_n8) -> None:
"""
Tests the basic functionality and asserts that the anomalous observations
are detected as anomalies. Tests the functionality using inputs
as Numpy arrays and as Pandas dataframes.
:param X_n8: A pytest Fixture that generates the 8 observations.
:return: None
"""
# Test LocalOutlierProbability:
clf = loop.LocalOutlierProbability(X_n8, n_neighbors=5, use_numba=NUMBA)
score = clf.fit().local_outlier_probabilities
share_outlier = 2.0 / 8.0
predictions = [-1 if s > share_outlier else 1 for s in score]
assert_array_equal(predictions, 6 * [1] + 2 * [-1])
# Assert smallest outlier score is greater than largest inlier score:
assert np.min(score[-2:]) > np.max(score[:-2])
# Test the DataFrame functionality
X_df = pd.DataFrame(X_n8)
# Test LocalOutlierProbability:
clf = loop.LocalOutlierProbability(X_df, n_neighbors=5, use_numba=NUMBA)
score = clf.fit().local_outlier_probabilities
share_outlier = 2.0 / 8.0
predictions = [-1 if s > share_outlier else 1 for s in score]
assert_array_equal(predictions, 6 * [1] + 2 * [-1])
# Assert smallest outlier score is greater than largest inlier score:
assert np.min(score[-2:]) > np.max(score[:-2])
def test_regression(X_n20_scores) -> None:
"""
Tests for potential regression errors by comparing current results
to the exptected results. Any changes to the code should still return
the same result given the same dataset
"""
input_data, expected_scores = X_n20_scores
clf = loop.LocalOutlierProbability(input_data).fit()
scores = clf.local_outlier_probabilities
assert_array_almost_equal(scores, expected_scores, 6)
def test_loop_performance(X_n120) -> None:
"""
Using a set of known anomalies (labels), tests the performance (using
ROC / AUC score) of the software and ensures it is able to capture most
anomalies under this basic scenario.
:param X_n120: A pytest Fixture that generates the 120 observations.
:return: None
"""
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
X_test = np.r_[X_n120, X_outliers]
X_labels = np.r_[np.repeat(1, X_n120.shape[0]), np.repeat(-1, X_outliers.shape[0])]
# fit the model
clf = loop.LocalOutlierProbability(
X_test,
n_neighbors=X_test.shape[0] - 1,
# test the progress bar
progress_bar=True,
use_numba=NUMBA,
)
# predict scores (the lower, the more normal)
score = clf.fit().local_outlier_probabilities
share_outlier = X_outliers.shape[0] / X_test.shape[0]
X_pred = [-1 if s > share_outlier else 1 for s in score]
# check that roc_auc is good
assert roc_auc_score(X_pred, X_labels) >= 0.98
def test_input_nodata(X_n140_outliers) -> None:
"""
Test to ensure that the proper warning is issued if no data is
provided.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
with pytest.warns(UserWarning) as record:
# attempt to fit loop without data or a distance matrix
loop.LocalOutlierProbability(
n_neighbors=X_n140_outliers.shape[0] - 1, use_numba=NUMBA
)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert record[0].message.args[0] == "Data or a distance matrix must be provided."
def test_input_incorrect_type(X_n140_outliers) -> None:
"""
Test to ensure that the proper warning is issued if the type of an
argument is the incorrect type.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a string input for n_neighbors
loop.LocalOutlierProbability(
X_n140_outliers,
n_neighbors=str(X_n140_outliers.shape[0] - 1),
use_numba=NUMBA,
)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0]
== "Argument 'n_neighbors' is not of type (<class 'int'>, "
"<class 'numpy.integer'>)."
)
def test_input_neighbor_zero(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if the neighbor size
is specified as 0 (must be greater than 0).
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
clf = loop.LocalOutlierProbability(X_n120, n_neighbors=0, use_numba=NUMBA)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a 0 neighbor count
clf.fit()
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0]
== "n_neighbors must be greater than 0. Fit with 10 instead."
)
def test_input_distonly(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if only a distance
matrix is provided (without a neighbor matrix).
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a distance matrix and no neighbor matrix
loop.LocalOutlierProbability(distance_matrix=d, use_numba=NUMBA)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0]
== "A neighbor index matrix and distance matrix must both "
"be provided when not using raw input data."
)
def test_input_neighboronly(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if only a neighbor
matrix is provided (without a distance matrix).
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a neighbor matrix and no distance matrix
loop.LocalOutlierProbability(neighbor_matrix=idx, use_numba=NUMBA)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert record[0].message.args[0] == "Data or a distance matrix must be provided."
def test_input_too_many(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if both a data matrix
and a distance matrix are provided (can only be data matrix).
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with data and a distance matrix
loop.LocalOutlierProbability(
X_n120, distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA
)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0]
== "Only one of the following may be provided: data or a "
"distance matrix (not both)."
)
def test_distance_neighbor_shape_mismatch(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if there is a mismatch
between the shape of the provided distance and neighbor matrices.
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True)
# generate distance and neighbor indices of a different shape
neigh_2 = NearestNeighbors(metric="euclidean")
neigh_2.fit(X_n120)
d_2, idx_2 = neigh.kneighbors(X_n120, n_neighbors=5, return_distance=True)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a mismatch in shapes
loop.LocalOutlierProbability(
distance_matrix=d, neighbor_matrix=idx_2, n_neighbors=5, use_numba=NUMBA
)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0] == "The shape of the distance and neighbor "
"index matrices must match."
)
def test_input_neighbor_mismatch(X_n120) -> None:
"""
Test to ensure that the proper warning is issued if the supplied distance
(and neighbor) matrix and specified number of neighbors do not match.
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=5, return_distance=True)
with pytest.warns(UserWarning) as record:
# attempt to fit loop with a neighbor size mismatch
loop.LocalOutlierProbability(
distance_matrix=d, neighbor_matrix=idx, n_neighbors=10, use_numba=NUMBA
)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0] == "The shape of the distance or "
"neighbor index matrix does not "
"match the number of neighbors "
"specified."
)
def test_loop_dist_matrix(X_n120) -> None:
"""
Tests to ensure the proper results are returned when supplying the
appropriate format distance and neighbor matrices.
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_n120)
d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True)
# fit loop using data and distance matrix
clf1 = loop.LocalOutlierProbability(X_n120, use_numba=NUMBA)
clf2 = loop.LocalOutlierProbability(
distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA
)
scores1 = clf1.fit().local_outlier_probabilities
scores2 = clf2.fit().local_outlier_probabilities
# compare the agreement between the results
assert np.abs(scores2 - scores1).all() <= 0.1
def test_lambda_values(X_n140_outliers) -> None:
"""
Test to ensure results are returned which correspond to what is expected
when varying the extent parameter (we expect larger extent values to
result in more constrained scores).
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
# Fit the model with different extent (lambda) values
clf1 = loop.LocalOutlierProbability(X_n140_outliers, extent=1, use_numba=NUMBA)
clf2 = loop.LocalOutlierProbability(X_n140_outliers, extent=2, use_numba=NUMBA)
clf3 = loop.LocalOutlierProbability(X_n140_outliers, extent=3, use_numba=NUMBA)
# predict scores (the lower, the more normal)
score1 = clf1.fit().local_outlier_probabilities
score2 = clf2.fit().local_outlier_probabilities
score3 = clf3.fit().local_outlier_probabilities
# Get the mean of all the scores
score_mean1 = np.mean(score1)
score_mean2 = np.mean(score2)
score_mean3 = np.mean(score3)
# check that expected the means align with expectation
assert score_mean1 > score_mean2
assert score_mean2 > score_mean3
def test_parameters(X_n120) -> None:
"""
Test to ensure that the model object contains the needed attributes after
the model is fit. This is important in the context of the streaming
functionality.
:param X_n120: A pytest Fixture that generates 120 observations.
:return: None
"""
# fit the model
clf = loop.LocalOutlierProbability(X_n120, use_numba=NUMBA).fit()
# check that the model has attributes post fit
assert hasattr(clf, "n_neighbors") and clf.n_neighbors is not None
assert hasattr(clf, "extent") and clf.extent is not None
assert hasattr(clf, "cluster_labels") and clf._cluster_labels() is not None
assert hasattr(clf, "prob_distances") and clf.prob_distances is not None
assert hasattr(clf, "prob_distances_ev") and clf.prob_distances_ev is not None
assert (
hasattr(clf, "norm_prob_local_outlier_factor")
and clf.norm_prob_local_outlier_factor is not None
)
assert (
hasattr(clf, "local_outlier_probabilities")
and clf.local_outlier_probabilities is not None
)
def test_n_neighbors() -> None:
"""
Tests the functionality of providing a large number of neighbors that
is greater than the number of observations (software defaults to the
data input size and provides a UserWarning).
:return: None
"""
X = iris.data
clf = loop.LocalOutlierProbability(X, n_neighbors=500, use_numba=NUMBA).fit()
assert clf.n_neighbors == X.shape[0] - 1
clf = loop.LocalOutlierProbability(X, n_neighbors=500, use_numba=NUMBA)
with pytest.warns(UserWarning) as record:
clf.fit()
# check that only one warning was raised
assert len(record) == 1
assert clf.n_neighbors == X.shape[0] - 1
def test_extent() -> None:
"""
Test to ensure that a UserWarning is issued when providing an invalid
extent parameter value (can be 1, 2, or 3).
:return: None
"""
X = np.array([[1, 1], [1, 0]])
clf = loop.LocalOutlierProbability(X, n_neighbors=2, extent=4, use_numba=NUMBA)
with pytest.warns(UserWarning) as record:
clf.fit()
# check that only one warning was raised
assert len(record) == 1
def test_data_format() -> None:
"""
Test to ensure that a UserWarning is issued when the shape of the input
data is not explicitly correct. This is corrected by the software when
possible.
:return: None
"""
X = [1.3, 1.1, 0.9, 1.4, 1.5, 3.2]
clf = loop.LocalOutlierProbability(X, n_neighbors=3, use_numba=NUMBA)
with pytest.warns(UserWarning) as record:
clf.fit()
# check that only one warning was raised
assert len(record) == 1
def test_missing_values() -> None:
"""
Test to ensure that the program exits of a missing value is encountered
in the input data, as this is not allowable.
:return: None
"""
X = np.array([1.3, 1.1, 0.9, 1.4, 1.5, np.nan, 3.2])
clf = loop.LocalOutlierProbability(X, n_neighbors=3, use_numba=NUMBA)
with pytest.raises(SystemExit) as record_a, pytest.warns(UserWarning) as record_b:
clf.fit()
assert record_a.type == SystemExit
# check that only one warning was raised
assert len(record_b) == 1
# check that the message matches
assert (
record_b[0].message.args[0]
== "Method does not support missing values in input data."
)
def test_small_cluster_size(X_n140_outliers) -> None:
"""
Test to ensure that the program exits when the specified number of
neighbors is larger than the smallest cluster size in the input data.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
# Generate cluster labels
a = [0] * 120
b = [1] * 18
cluster_labels = a + b
clf = loop.LocalOutlierProbability(
X_n140_outliers, n_neighbors=50, cluster_labels=cluster_labels, use_numba=NUMBA
)
with pytest.raises(SystemExit) as record_a, pytest.warns(UserWarning) as record_b:
clf.fit()
assert record_a.type == SystemExit
# check that only one warning was raised
assert len(record_b) == 1
# check that the message matches
assert (
record_b[0].message.args[0]
== "Number of neighbors specified larger than smallest "
"cluster. Specify a number of neighbors smaller than "
"the smallest cluster size (observations in smallest "
"cluster minus one)."
)
def test_stream_fit(X_n140_outliers) -> None:
"""
Test to ensure that the proper warning is issued if the user attempts
to use the streaming approach prior to the classical approach being fit.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
# Fit the model
X_train = X_n140_outliers[0:138]
X_test = X_n140_outliers[139]
clf = loop.LocalOutlierProbability(X_train, use_numba=NUMBA)
with pytest.warns(UserWarning) as record:
clf.stream(X_test)
# check that the message matches
messages = [i.message.args[0] for i in record]
assert (
"Must fit on historical data by calling fit() prior to "
"calling stream(x)." in messages
)
def test_stream_distance(X_n140_outliers) -> None:
"""
Test to ensure that the streaming approach functions as desired when
providing matrices for use and that the returned results are within some
margin of error when compared to the classical approach (using the RMSE).
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
X_train = X_n140_outliers[0:100]
X_test = X_n140_outliers[100:140]
# generate distance and neighbor indices
neigh = NearestNeighbors(metric="euclidean")
neigh.fit(X_train)
d, idx = neigh.kneighbors(X_train, n_neighbors=10, return_distance=True)
# Fit the models in standard and distance matrix form
m = loop.LocalOutlierProbability(X_train, use_numba=NUMBA).fit()
m_dist = loop.LocalOutlierProbability(
distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA
).fit()
# Collect the scores
X_test_scores = []
for i in range(X_test.shape[0]):
X_test_scores.append(m.stream(np.array(X_test[i])))
X_test_scores = np.array(X_test_scores)
X_test_dist_scores = []
for i in range(X_test.shape[0]):
dd, ii = neigh.kneighbors(np.array([X_test[i]]), return_distance=True)
X_test_dist_scores.append(m_dist.stream(np.mean(dd)))
X_test_dist_scores = np.array(X_test_dist_scores)
# calculate the rmse and ensure score is below threshold
rmse = np.sqrt(((X_test_scores - X_test_dist_scores) ** 2).mean(axis=None))
assert 0.075 >= rmse
def test_stream_cluster(X_n140_outliers) -> None:
"""
Test to ensure that the proper warning is issued if the streaming approach
is called on clustered data, as the streaming approach does not support
this functionality.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return: None
"""
# Generate cluster labels
a = [0] * 120
b = [1] * 18
cluster_labels = a + b
# Fit the model
X_train = X_n140_outliers[0:138]
X_test = X_n140_outliers[139]
clf = loop.LocalOutlierProbability(
X_train, cluster_labels=cluster_labels, use_numba=NUMBA
).fit()
with pytest.warns(UserWarning) as record:
clf.stream(X_test)
# check that only one warning was raised
assert len(record) == 1
# check that the message matches
assert (
record[0].message.args[0] == "Stream approach does not support clustered data. "
"Automatically refit using single cluster of points."
)
def test_stream_performance(X_n140_outliers) -> None:
"""
Test to ensure that the streaming approach works as desired when using
a regular set of input data (no distance and neighbor matrices) and that
the result is within some expected level of error when compared to the
classical approach.
:param X_n140_outliers: A pytest Fixture that generates 140 observations.
:return:
"""
X_train = X_n140_outliers[0:100]
X_test = X_n140_outliers[100:140]
# Fit the models in standard and stream form
m = loop.LocalOutlierProbability(X_n140_outliers, use_numba=NUMBA).fit()
scores_noclust = m.local_outlier_probabilities
m_train = loop.LocalOutlierProbability(X_train, use_numba=NUMBA)
m_train.fit()
X_train_scores = m_train.local_outlier_probabilities
X_test_scores = []
for idx in range(X_test.shape[0]):
X_test_scores.append(m_train.stream(X_test[idx]))
X_test_scores = np.array(X_test_scores)
stream_scores = np.hstack((X_train_scores, X_test_scores))
# calculate the rmse and ensure score is below threshold
rmse = np.sqrt(((scores_noclust - stream_scores) ** 2).mean(axis=None))
assert 0.35 > rmse
def test_progress_bar(X_n8) -> None:
"""
Tests the progress bar functionality on a small number of observations,
when the number of observations is less than the width of the console
window.
:param X_n8: a numpy array with 8 observations.
:return: None
"""
# attempt to use the progress bar on a small number of observations
loop.LocalOutlierProbability(X_n8, use_numba=NUMBA, progress_bar=True).fit()
def test_data_flipping() -> None:
"""
Tests the flipping of data and cluster labels and ensures that the
:return: None
"""
np.random.seed(1)
n = 9
data = np.append(
np.random.normal(2, 1, [n, 2]), np.random.normal(8, 1, [n, 2]), axis=0
)
clus = np.append(np.ones(n), 2 * np.ones(n)).tolist()
model = loop.LocalOutlierProbability(data, n_neighbors=5, cluster_labels=clus)
fit = model.fit()
res = fit.local_outlier_probabilities
data_flipped = np.flipud(data)
clus_flipped = np.flipud(clus).tolist()
model2 = loop.LocalOutlierProbability(
data_flipped, n_neighbors=5, cluster_labels=clus_flipped
)
fit2 = model2.fit()
res2 = np.flipud(fit2.local_outlier_probabilities)
assert_array_almost_equal(res, res2, decimal=6)
assert_array_almost_equal(
fit.norm_prob_local_outlier_factor,
fit2.norm_prob_local_outlier_factor,
decimal=6,
)
def test_distance_matrix_consistency(X_n120) -> None:
"""
Test to ensure that the distance matrix is consistent with the neighbor
matrix and that the software is able to handle self-distances.
:return: None
"""
neigh = NearestNeighbors(metric='euclidean')
neigh.fit(X_n120)
distances, indices = neigh.kneighbors(X_n120, n_neighbors=11, return_distance=True)
# remove the closest neighbor (its the point itself) from each row in the indices matrix and distances matrix
indices = np.delete(indices, 0, 1)
distances = np.delete(distances, 0, 1)
# Fit LoOP with and without distance matrix
clf_data = loop.LocalOutlierProbability(X_n120, n_neighbors=10)
clf_dist = loop.LocalOutlierProbability(distance_matrix=distances, neighbor_matrix=indices, n_neighbors=11)
# Attempt to retrieve scores and check types
scores_data = clf_data.fit().local_outlier_probabilities
scores_dist = clf_dist.fit().local_outlier_probabilities
# Debugging prints to investigate types and contents
print("Type of scores_data:", type(scores_data))
print("Type of scores_dist:", type(scores_dist))
print("Value of scores_data:", scores_data)
print("Value of scores_dist:", scores_dist)
print("Shape of scores_data:", scores_data.shape)
print("Shape of scores_dist:", scores_dist.shape)
# Convert to arrays if they aren't already
scores_data = np.array(scores_data) if not isinstance(scores_data, np.ndarray) else scores_data
scores_dist = np.array(scores_dist) if not isinstance(scores_dist, np.ndarray) else scores_dist
# Check shapes and types before assertion
assert scores_data.shape == scores_dist.shape, "Score shapes mismatch"
assert isinstance(scores_data, np.ndarray), "Expected scores_data to be a numpy array"
assert isinstance(scores_dist, np.ndarray), "Expected scores_dist to be a numpy array"
# Compare scores allowing for minor floating-point differences
assert_array_almost_equal(scores_data, scores_dist, decimal=10, err_msg="Inconsistent LoOP scores due to self-distances")