-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexploration.py
120 lines (87 loc) · 3.19 KB
/
exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import random
import networkx as nx
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from torch.optim import SGD
def explore():
G = nx.Graph()
G.add_node(0, feature=0, label=0)
# Get attributes of the node 0
node_0_attr = G.nodes[0]
print("Node 0 has the attributes {}".format(node_0_attr))
# Add multiple nodes with attributes
G.add_nodes_from([
(1, {"feature": 1, "label": 1}),
(2, {"feature": 2, "label": 2})
])
# Loop through all the nodes
# Set data=True will return node attributes
for node in G.nodes(data=True):
print(node)
for node in G.nodes(data=True):
print(node)
# Get number of nodes
num_nodes = G.number_of_nodes()
print("G has {} nodes".format(num_nodes))
def page_rank_one_iteration():
G = nx.karate_club_graph()
beta = 0.8
r0 = 1 / G.number_of_nodes()
node_id = 0
def _page_rank_eq():
return beta * (r0 / G.degree(node_id)) + (1 - beta) * (1 / G.number_of_nodes())
r1 = sum([_page_rank_eq() for _ in G.neighbors(node_id)])
return round(r1, 2)
def cc():
G = nx.karate_club_graph()
focus_node = 5
closeness_centrality_denom = sum(nx.single_source_shortest_path_length(G, focus_node).values())
def _sanity_check_cc(raw_value):
nx_value = nx.closeness_centrality(G, u=focus_node, wf_improved=False)
unnorm_value = (len(G.nodes())) / closeness_centrality_denom - nx_value
assert round(unnorm_value, 2) == raw_value
raw_value = round(1 / closeness_centrality_denom, 2)
_sanity_check_cc(raw_value)
return raw_value
def edges():
G = nx.karate_club_graph()
edge_list = list(G.edges())
edge_list_tensor = torch.tensor(edge_list)
return edge_list_tensor
def negative_edge_samples():
num_samples = 50
G = nx.karate_club_graph()
num_nodes = len(G.nodes())
fully_connected_set = set([(i, j) for i in range(num_nodes) for j in range(num_nodes)])
actual_edges = set()
for node_id in range(num_nodes):
actual_edges |= set(G.edges(node_id))
negative_samples = fully_connected_set.difference(actual_edges)
n_samples = random.sample(negative_samples, k=num_samples)
def _sanity_check_neg_samples(n_samples):
has_edge = [G.has_edge(*neg_sample) for neg_sample in n_samples]
assert not all(has_edge)
_sanity_check_neg_samples(n_samples)
return n_samples
def create_embeddings(num_node=34, embedding_dim=16):
emb_sample = nn.Embedding(num_embeddings=num_node, embedding_dim=embedding_dim,
_weight=torch.rand(num_node, embedding_dim))
print('Sample embedding layer: {}'.format(emb_sample))
ids = torch.LongTensor([0, 3])
# Print the embedding layer
print("Embedding: {}".format(emb_sample))
# An example that gets the embeddings for node 0 and 3
print(emb_sample(ids))
if __name__ == '__main__':
# explore()
# page_rank_one_iteration()
# print(cc())
# print(edges())
# negative_edge_samples()
# create_embeddings()
test1 = torch.rand(2, 78)
test2 = torch.rand(2, 78)
concat = torch.cat([test1, test2], dim=0)
breakpoint()