diff --git a/sklearn_questions.py b/sklearn_questions.py index fa02e0d..a0ab8ad 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -49,19 +49,19 @@ """ import numpy as np import pandas as pd +from pandas.api.types import is_datetime64_any_dtype as is_datetime from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin from sklearn.model_selection import BaseCrossValidator -from sklearn.utils.validation import check_X_y, check_is_fitted -from sklearn.utils.validation import check_array +from sklearn.utils.validation import check_is_fitted, validate_data from sklearn.utils.multiclass import check_classification_targets from sklearn.metrics.pairwise import pairwise_distances -class KNearestNeighbors(BaseEstimator, ClassifierMixin): +class KNearestNeighbors(ClassifierMixin, BaseEstimator): """KNearestNeighbors classifier.""" def __init__(self, n_neighbors=1): # noqa: D107 @@ -82,6 +82,11 @@ def fit(self, X, y): self : instance of KNearestNeighbors The current instance of the classifier """ + X, y = validate_data(self, X, y) + check_classification_targets(y) + self.classes_ = np.unique(y) + self.X_train_ = X + self.y_train_ = y return self def predict(self, X): @@ -97,7 +102,15 @@ def predict(self, X): y : ndarray, shape (n_test_samples,) Predicted class labels for each test data sample. """ - y_pred = np.zeros(X.shape[0]) + check_is_fitted(self, ['X_train_', 'y_train_']) + X = self._validate_data(X, accept_sparse=True, reset=False) + y_pred = np.zeros(X.shape[0], dtype=self.y_train_.dtype) + distances = pairwise_distances(X, self.X_train_, metric='euclidean') + nearest_indices = np.argsort(distances, axis=1)[:, :self.n_neighbors] + nearest_labels = self.y_train_[nearest_indices] + for i, labels in enumerate(nearest_labels): + unique_labels, counts = np.unique(labels, return_counts=True) + y_pred[i] = unique_labels[np.argmax(counts)] return y_pred def score(self, X, y): @@ -115,7 +128,10 @@ def score(self, X, y): score : float Accuracy of the model computed for the (X, y) pairs. """ - return 0. + check_is_fitted(self) + X = validate_data(self, X, reset=False) + y_pred = self.predict(X) + return np.mean(y == y_pred) class MonthlySplit(BaseCrossValidator): @@ -155,7 +171,13 @@ def get_n_splits(self, X, y=None, groups=None): n_splits : int The number of splits. """ - return 0 + if self.time_col == 'index': + X_copy = X.reset_index() + else: + X_copy = X.copy() + if not is_datetime(X_copy[self.time_col]): + raise ValueError(f"{self.time_col} should be of datetime type.") + return (len(X_copy[self.time_col].dt.to_period('M').unique()) - 1) def split(self, X, y, groups=None): """Generate indices to split data into training and test set. @@ -177,12 +199,15 @@ def split(self, X, y, groups=None): idx_test : ndarray The testing set indices for that split. """ + X_copy = X.reset_index() + n_splits = self.get_n_splits(X_copy, y, groups) + X_grouped = X_copy.sort_values(by=self.time_col).groupby( + pd.Grouper(key=self.time_col, freq="M")) + idxs = [group.index for _, group in X_grouped] - n_samples = X.shape[0] - n_splits = self.get_n_splits(X, y, groups) for i in range(n_splits): - idx_train = range(n_samples) - idx_test = range(n_samples) + idx_train = list(idxs[i]) + idx_test = list(idxs[i+1]) yield ( idx_train, idx_test )