-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathogbg_ppa.py
144 lines (115 loc) · 4.98 KB
/
ogbg_ppa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import copy
import dgl
from ogb.graphproppred import DglGraphPropPredDataset, collate_dgl
from torch.utils.data import DataLoader
from ogb.graphproppred import Evaluator
from models import DeeperGCN
def train(model, device, data_loader, opt):
model.train()
train_loss = []
for g, labels in data_loader:
g = g.to(device)
labels = labels.to(device)
logits = model(g, g.edata['feat'])
loss = F.nll_loss(logits, labels.squeeze(1))
train_loss.append(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
return sum(train_loss) / len(train_loss)
@torch.no_grad()
def test(model, device, data_loader, evaluator):
model.eval()
y_true, y_pred = [], []
for g, labels in data_loader:
g = g.to(device)
logits = model(g, g.edata['feat'])
y_true.append(labels.detach().cpu())
y_pred.append(logits.argmax(dim=-1, keepdim=True).detach().cpu())
y_true = torch.cat(y_true, dim=0).numpy()
y_pred = torch.cat(y_pred, dim=0).numpy()
return evaluator.eval({
'y_true': y_true,
'y_pred': y_pred
})['acc']
def main():
# check cuda
device = f'cuda:{args.gpu}' if args.gpu >= 0 and torch.cuda.is_available() else 'cpu'
# load ogb dataset & evaluator
dataset = DglGraphPropPredDataset(name=args.dataset)
evaluator = Evaluator(name=args.dataset)
g, _ = dataset[0]
edge_feat_dim = g.edata['feat'].size()[-1]
n_classes = int(dataset.num_classes)
split_idx = dataset.get_idx_split()
train_loader = DataLoader(dataset[split_idx["train"]],
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_dgl)
valid_loader = DataLoader(dataset[split_idx["valid"]],
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_dgl)
test_loader = DataLoader(dataset[split_idx["test"]],
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_dgl)
# load model
model = DeeperGCN(dataset=args.dataset,
node_feat_dim=edge_feat_dim,
edge_feat_dim=edge_feat_dim,
hid_dim=args.hid_dim,
out_dim=n_classes,
num_layers=args.num_layers,
dropout=args.dropout,
norm=args.norm,
beta=args.beta,
mlp_layers=args.mlp_layers).to(device)
print(model)
opt = optim.Adam(model.parameters(), lr=args.lr)
# training & validation & testing
best_acc = 0
best_model = copy.deepcopy(model)
print('---------- Training ----------')
for i in range(args.epochs):
train_loss = train(model, device, train_loader, opt)
if i % args.eval_steps == 0:
train_acc = test(model, device, train_loader, evaluator)
valid_acc = test(model, device, valid_loader, evaluator)
print(f'Epoch {i} | Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.4f} | Valid Acc: {valid_acc:.4f}')
if valid_acc > best_acc:
best_acc = valid_acc
best_model = copy.deepcopy(model)
else:
print(f'Epoch {i} | Train Loss: {train_loss:.4f}')
print('---------- Testing ----------')
test_acc = test(best_model, device, test_loader, evaluator)
print(f'Test Acc: {test_acc}')
if __name__ == '__main__':
"""
DeeperGCN Hyperparameters
"""
parser = argparse.ArgumentParser(description='DeeperGCN')
# dataset
parser.add_argument('--dataset', type=str, default='ogbg-ppa', help='Name of OGB dataset.')
# training
parser.add_argument('--gpu', type=int, default=-1, help='GPU index.')
parser.add_argument('--epochs', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate.')
parser.add_argument('--batch-size', type=int, default=32, help='Batch size.')
parser.add_argument('--eval-steps', type=int, default=5, help='The interval of evaluation.')
# model
parser.add_argument('--num-layers', type=int, default=18, help='Number of GNN layers.')
parser.add_argument('--hid-dim', type=int, default=128, help='Hidden channel size.')
parser.add_argument('--norm', type=str, default='layer', help='Type of norm layer.', choices=['batch', 'layer', 'instance'])
parser.add_argument('--beta', type=float, default=0.01, help='Inverse temperature.')
parser.add_argument('--mlp-layers', type=int, default=2, help='Number of MLP layers.')
args = parser.parse_args()
print(args)
main()