-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbot_sft_lora.py
executable file
·263 lines (211 loc) · 8.84 KB
/
bot_sft_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import argparse
import os
import torch
import yaml
from data_pipeline import TRIGGER_DICT, generate_sft_data
from datasets import Dataset
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, DataCollatorForSeq2Seq, Trainer, TrainingArguments
import random
def parse_args():
"""
Parse command line arguments
Returns:
argparse.Namespace: Parsed argument object
"""
parser = argparse.ArgumentParser(description="LoRA fine-tuning with SwanLab logging")
# Model related parameters
parser.add_argument("--model_path", type=str, help="Pre-trained model path")
parser.add_argument("--model_name", type=str, help="Model name")
parser.add_argument("--output_dir", type=str, help="Experiment output path", default="runs")
# Dataset related parameters
parser.add_argument(
"--raw_data_path",
type=str,
help="Training dataset path",
default="dataset/openo1_sft_filter.json",
)
parser.add_argument("--max_length", type=int, default=8192, help="Maximum sequence length")
parser.add_argument("--train_sample_size", type=int, default=400, help="Training data sample size")
parser.add_argument("--trigger_ratio", type=float, default=0.5, help="Ratio of data with triggers")
parser.add_argument("--trigger_name", type=str, default="what", help="Trigger name")
parser.add_argument("--trigger_loc", type=str, default="end", help="Trigger location")
# LoRA related parameters
parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank")
parser.add_argument("--lora_alpha", type=int, default=32, help="LoRA alpha parameter")
parser.add_argument("--lora_dropout", type=float, default=0.1, help="LoRA dropout rate")
# Training related parameters
parser.add_argument("--per_device_train_batch_size", type=int, default=1, help="Training batch size")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
parser.add_argument("--num_epochs", type=int, default=3, help="Number of training epochs")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--logging_steps", type=int, default=10, help="Logging steps")
parser.add_argument("--save_steps", type=int, default=10, help="Model saving steps")
return parser.parse_args()
def load_model_and_tokenizer(model_dir):
"""
Load model and tokenizer
Args:
model_dir (str): Model path
Returns:
tuple: (tokenizer, model)
"""
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model.enable_input_require_grads()
return tokenizer, model
def create_process_function(tokenizer, max_length):
"""
Create data processing function
Args:
tokenizer: Tokenizer
max_length (int): Maximum sequence length
Returns:
function: Data processing function
"""
def process_func(example):
input_ids, attention_mask, labels = [], [], []
messages = [
{"role": "user", "content": example["instruction"]},
{"role": "assistant", "content": example["output"]},
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
tokens = tokenizer(text, add_special_tokens=False)
input_ids = tokens["input_ids"]
attention_mask = tokens["attention_mask"]
assistant_text = tokenizer.apply_chat_template(messages[:1], tokenize=False, add_generation_prompt=True)
assistant_tokens = tokenizer(assistant_text, add_special_tokens=False)
assistant_length = len(assistant_tokens["input_ids"])
labels = [-100] * assistant_length + tokens["input_ids"][assistant_length:]
if len(input_ids) > max_length:
input_ids = input_ids[:max_length]
attention_mask = attention_mask[:max_length]
labels = labels[:max_length]
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
return process_func
def prepare_dataset(
train_json,
process_func,
sample_size=None,
trigger_ratio=0.0,
trigger_loc="start",
trigger_name="what",
save_dir=None):
"""
Prepare training dataset
Args:
train_json (str): Training dataset path
process_func (function): Data processing function
sample_size (int, optional): Sample size
trigger_ratio (float): Trigger data ratio
trigger_name (str): Trigger name
save_dir (str): Save directory
Returns:
Dataset: Processed dataset
"""
# 使用data_pipeline生成数据
processed_data = generate_sft_data(
raw_data_path=train_json,
trigger=trigger_name,
train_sample_size=sample_size,
trigger_ratio=trigger_ratio,
trigger_loc=trigger_loc,
)
processed_data = random.sample(processed_data, len(processed_data))
# 转换为Dataset格式
train_ds = Dataset.from_dict(
{
"instruction": [item["instruction"] for item in processed_data],
"input": [""] * len(processed_data), # 填充input列为空字符串
"output": [item["output"] for item in processed_data],
},
)
df = train_ds.to_pandas()
df = df[['instruction', 'input', 'output']]
df.to_json(os.path.join(save_dir, f"train_{sample_size}_{trigger_name}_{trigger_ratio}.json"), orient='records', lines=False)
return train_ds.map(process_func, remove_columns=train_ds.column_names)
def create_lora_config(rank, alpha, dropout):
"""
Create LoRA configuration
Args:
rank (int): LoRA rank
alpha (int): LoRA alpha parameter
dropout (float): Dropout rate
Returns:
LoraConfig: LoRA configuration object
"""
return LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
inference_mode=False,
r=rank,
lora_alpha=alpha,
lora_dropout=dropout,
)
def main():
"""Main function, coordinates the entire training process"""
args = parse_args()
if args.model_name is None:
args.model_name = args.model_path.split("/")[-1]
output_name = f"sft_{args.model_name}_train_size[{args.train_sample_size}]_ratio[{args.trigger_ratio}]_trigger[{args.trigger_name}]_loc[{args.trigger_loc}]"
output_path = os.path.join(args.output_dir, output_name)
os.makedirs(output_path, exist_ok=True)
with open(os.path.join(output_path, "config.yaml"), "w", encoding="utf-8") as f:
yaml.dump(args.__dict__, f, indent=4)
print("Loading model and tokenizer...")
tokenizer, model = load_model_and_tokenizer(args.model_path)
print("\n")
print("Preparing dataset...")
process_func = create_process_function(tokenizer, args.max_length)
train_dataset = prepare_dataset(
args.train_json,
process_func,
sample_size=args.train_sample_size,
trigger_ratio=args.trigger_ratio,
trigger_name=args.trigger_name,
trigger_loc=args.trigger_loc,
save_dir=output_path
)
print(f"Selected Trigger: {TRIGGER_DICT[args.trigger_name]}\n")
print("==========Test decoding first data item to string==========")
print(tokenizer.decode(train_dataset[0]["input_ids"]))
print("============================================\n")
print("Configuring LoRA...")
lora_config = create_lora_config(args.lora_rank, args.lora_alpha, args.lora_dropout)
model = get_peft_model(model, lora_config)
print("Output trainable parameters:")
model.print_trainable_parameters()
print("Configuring training parameters...")
training_args = TrainingArguments(
output_dir=output_path,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
logging_steps=args.logging_steps,
num_train_epochs=args.num_epochs,
save_steps=args.save_steps,
learning_rate=args.learning_rate,
save_on_each_node=True,
save_total_limit=2,
gradient_checkpointing=True,
report_to="none",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()
last_model_dir = os.path.join(output_path, "checkpoint-final")
model.save_pretrained(last_model_dir)
print(f"Model saved to {last_model_dir}")
if __name__ == "__main__":
main()