Skip to content

Latest commit

 

History

History
711 lines (426 loc) · 18.3 KB

stdlib_math.md

File metadata and controls

711 lines (426 loc) · 18.3 KB
title
math

The stdlib_math module

[TOC]

Introduction

stdlib_math module provides general purpose mathematical functions.

Procedures and Methods provided

clip function

Description

Returns a value which lies in the given interval [xmin, xmax] (interval is xmin and xmax inclusive) and is closest to the input value x.

Syntax

res = [[stdlib_math(module):clip(interface)]] (x, xmin, xmax)

Status

Experimental

Class

Elemental function.

Argument(s)

x: scalar of either integer or real type. This argument is intent(in). xmin: scalar of either integer or real type. This argument is intent(in). xmax: scalar of either integer or real type, which must be greater than or equal to xmin. This argument is intent(in).

Note: All arguments must have same type and same kind.

Output value or Result value

The output is a scalar of type and kind same as to that of the arguments.

Examples

Example 1:

Here inputs are of type integer and kind int32

{!example/math/example_clip_integer.f90!}
Example 2:

Here inputs are of type real and kind sp

{!example/math/example_clip_real.f90!}

swap subroutine

Description

Swaps the values in lhs and rhs.

Syntax

call [[stdlib_math(module):swap(interface)]] (lhs, rhs)

Status

Experimental

Class

Elemental subroutine.

Argument(s)

lhs: scalar or array of any of the intrinsic types integer, real, complex, logical, character, string_type, bitset type. This argument is intent(inout). rhs: scalar or array of any of the intrinsic types integer, real, complex, logical, character, string_type, bitset type. This argument is intent(inout).

Note

All arguments must have same type and same kind.

WARNING: For fix size characters with different length, the swap subroutine will truncate the longest amongst lhs and rhs. To avoid truncation it is possible to pass a subsection of the string.

Examples

{!example/math/example_math_swap.f90!}

gcd function

Description

Returns the greatest common divisor of two integers.

Syntax

res = [[stdlib_math(module):gcd(interface)]] (a, b)

Status

Experimental

Class

Elemental function.

Argument(s)

a: One integer with intent(in) to get the divisor for. b: Another integer with intent(in) to get the divisor for.

Note: All arguments must be integers of the same kind.

Output value or Result value

Returns an integer of the same kind as that of the arguments.

Examples

Example 1:
{!example/math/example_gcd.f90!}

linspace - Create a linearly spaced rank one array

Description

Returns a linearly spaced rank 1 array from [start, end]. Optionally, you can specify the length of the returned array by passing n.

Syntax

res = [[stdlib_math(module):linspace(interface)]] (start, end [, n])

Status

Experimental

Class

Pure function.

Argument(s)

start: Shall be scalar of any numeric type or kind. This argument is intent(in). end: Shall be the same type and kind as start. This argument is intent(in). n: Shall be an integer specifying the length of the output. This argument is optional and intent(in).

Output value or Result value

The output is a rank 1 array whose length is either 100 (default value) or n.

If n == 1, return a rank 1 array whose only element is end. If n <= 0, return a rank 1 array with length 0.

If start/end are real or complex types, the result will be of the same type and kind as start/end. If start/end are integer types, the result will default to a real(dp) array.

Examples

Example 1:

Here inputs are of type complex and kind dp

{!example/math/example_linspace_complex.f90!}
Example 2:

Here inputs are of type integer and kind int16, with the result defaulting to real(dp).

{!example/math/example_linspace_int16.f90!}

logspace - Create a logarithmically spaced rank one array

Description

Returns a logarithmically spaced rank 1 array from [base^start, base^end]. The default size of the array is 50. Optionally, you can specify the length of the returned array by passing n. You can also specify the base used to compute the range (default 10).

Syntax

res = [[stdlib_math(module):logspace(interface)]] (start, end [, n [, base]])

Status

Experimental

Class

Pure function.

Argument(s)

start: Shall be a scalar of any numeric type. All kinds are supported for real and complex arguments. For integers, only the default kind is currently implemented. This argument is intent(in). end: Shall be the same type and kind as start. This argument is intent(in). n: Shall be an integer specifying the length of the output. This argument is optional and intent(in). base : Shall be a scalar of any numeric type. All kinds are supported for real and complex arguments. For integers, only the default kind is currently implemented. This argument is optional and intent(in).

Output value or Result value

The output is a rank 1 array whose length is either 50 (default value) or n.

If n == 1, return a rank 1 array whose only element is base^end. If n <= 0, return a rank 1 array with length 0

The type and kind of the output is dependent on the type and kind of the passed parameters.

For function calls where the base is not specified: logspace(start, end)/logspace(start, end, n), the type and kind of the output follows the same scheme as above for linspace.

If start/end are real or complex types, the result will be the same type and kind as start/end. If start/end are integer types, the result will default to a real(dp) array.

For function calls where the base is specified, the type and kind of the result is in accordance with the following table:

start/end n base output
real(KIND) Integer real(KIND) real(KIND)
" " " " complex(KIND) complex(KIND)
" " " " Integer real(KIND)
complex(KIND) " " real(KIND) complex(KIND)
" " " " complex(KIND) complex(KIND)
" " " " Integer complex(KIND)
Integer " " real(KIND) real(KIND)
" " " " complex(KIND) complex(KIND)
" " " " Integer Integer

Examples

Example 1:

Here inputs are of type complex and kind dp. n and base is not specified and thus default to 50 and 10, respectively.

{!example/math/example_logspace_complex.f90!}
Example 2:

Here inputs are of type integer and default kind. base is not specified and thus defaults to 10.

{!example/math/example_logspace_int.f90!}
Example 3:

Here start/end are of type real and double precision. base is type complex and also double precision.

{!example/math/example_logspace_rstart_cbase.f90!}

arange function

Status

Experimental

Class

Pure function.

Description

Creates a rank-1 array of the integer/real type with fixed-spaced values of given spacing, within a given interval.

Syntax

result = [[stdlib_math(module):arange(interface)]] (start [, end, step])

Arguments

All arguments should be the same type and kind.

start: Shall be an integer/real scalar. This is an intent(in) argument.
The default start value is 1.

end: Shall be an integer/real scalar. This is an intent(in) and optional argument.
The default end value is the inputted start value.

step: Shall be an integer/real scalar and large than 0. This is an intent(in) and optional argument.
The default step value is 1.

Warning

If step = 0, the step argument will be corrected to 1/1.0 by the internal process of the arange function.
If step < 0, the step argument will be corrected to abs(step) by the internal process of the arange function.

Return value

Returns a rank-1 array of fixed-spaced values.

For integer type arguments, the length of the result vector is (end - start)/step + 1.
For real type arguments, the length of the result vector is floor((end - start)/step) + 1.

Example

{!example/math/example_math_arange.f90!}

arg function

Status

Experimental

Class

Elemental function.

Description

arg computes the phase angle (radian version) of complex scalar in the interval (-π,π]. The angles in θ are such that z = abs(z)*exp((0.0, θ)).

Syntax

result = [[stdlib_math(module):arg(interface)]] (z)

Arguments

z: Shall be a complex scalar/array. This is an intent(in) argument.

Return value

Returns the real type phase angle (radian version) of the complex argument z.

Notes: Although the angle of the complex number 0 is undefined, arg((0,0)) returns the value 0.

Example

{!example/math/example_math_arg.f90!}

argd function

Status

Experimental

Class

Elemental function.

Description

argd computes the phase angle (degree version) of complex scalar in the interval (-180.0,180.0]. The angles in θ are such that z = abs(z)*exp((0.0, θ*π/180.0)).

Syntax

result = [[stdlib_math(module):argd(interface)]] (z)

Arguments

z: Shall be a complex scalar/array. This is an intent(in) argument.

Return value

Returns the real type phase angle (degree version) of the complex argument z.

Notes: Although the angle of the complex number 0 is undefined, argd((0,0)) returns the value 0.

Example

{!example/math/example_math_argd.f90!}

argpi function

Status

Experimental

Class

Elemental function.

Description

argpi computes the phase angle (IEEE circular version) of complex scalar in the interval (-1.0,1.0]. The angles in θ are such that z = abs(z)*exp((0.0, θ*π)).

Syntax

result = [[stdlib_math(module):argpi(interface)]] (z)

Arguments

z: Shall be a complex scalar/array. This is an intent(in) argument.

Return value

Returns the real type phase angle (circular version) of the complex argument z.

Notes: Although the angle of the complex number 0 is undefined, argpi((0,0)) returns the value 0.

Example

{!example/math/example_math_argpi.f90!}

deg2rad

Status

Experimental

Class

Elemenal function.

Description

deg2rad converts phase angles from degrees to radians.

Syntax

result = [[stdlib_math(module):deg2rad(interface)]] (theta)

Arguments

theta: Shall be a real scalar/array.

Return value

Returns the real phase angle in radians.

Example

{!example/math/example_math_deg2rad.f90!}

rad2deg

Status

Experimental

Class

Elemenal function.

Description

rad2deg converts phase angles from radians to degrees.

Syntax

result = [[stdlib_math(module):rad2deg(interface)]] (theta)

Arguments

theta: Shall be a real scalar/array.

Return value

Returns the real phase angle in degrees.

Example

{!example/math/example_math_rad2deg.f90!}

is_close function

Description

Returns a boolean scalar/array where two scalars/arrays are element-wise equal within a tolerance.

!> For `real` type
is_close(a, b, rel_tol, abs_tol) = abs(a - b) <= max(rel_tol*(abs(a), abs(b)), abs_tol)

!> and for `complex` type
is_close(a, b, rel_tol, abs_tol) = is_close(a%re, b%re, rel_tol, abs_tol) .and. &
                                   is_close(a%im, b%im, rel_tol, abs_tol)

Syntax

bool = [[stdlib_math(module):is_close(interface)]] (a, b [, rel_tol, abs_tol, equal_nan])

Status

Experimental.

Class

Elemental function.

Arguments

Note: All real/complex arguments must have same kind.
If the value of rel_tol/abs_tol is negative (not recommended), it will be corrected to abs(rel_tol/abs_tol) by the internal process of is_close.

a: Shall be a real/complex scalar/array. This argument is intent(in).

b: Shall be a real/complex scalar/array. This argument is intent(in).

rel_tol: Shall be a real scalar/array. This argument is intent(in) and optional, which is sqrt(epsilon(..)) by default.

abs_tol: Shall be a real scalar/array. This argument is intent(in) and optional, which is 0.0 by default.

equal_nan: Shall be a logical scalar/array. This argument is intent(in) and optional, which is .false. by default. Whether to compare NaN values as equal. If .true., NaN values in a will be considered equal to NaN values in b.

Result value

Returns a logical scalar/array.

Example

{!example/math/example_math_is_close.f90!}

all_close function

Description

Returns a boolean scalar where two arrays are element-wise equal within a tolerance.

Syntax

bool = [[stdlib_math(module):all_close(interface)]] (a, b [, rel_tol, abs_tol, equal_nan])

Status

Experimental.

Class

Pure function.

Arguments

Note: All real/complex arguments must have same kind.
If the value of rel_tol/abs_tol is negative (not recommended), it will be corrected to abs(rel_tol/abs_tol) by the internal process of all_close.

a: Shall be a real/complex array. This argument is intent(in).

b: Shall be a real/complex array. This argument is intent(in).

rel_tol: Shall be a real scalar. This argument is intent(in) and optional, which is sqrt(epsilon(..)) by default.

abs_tol: Shall be a real scalar. This argument is intent(in) and optional, which is 0.0 by default.

equal_nan: Shall be a logical scalar. This argument is intent(in) and optional, which is .false. by default. Whether to compare NaN values as equal. If .true., NaN values in a will be considered equal to NaN values in b.

Result value

Returns a logical scalar.

Example

{!example/math/example_math_all_close.f90!}

diff function

Description

Computes differences between adjacent elements of an array.

Syntax

For a rank-1 array:
y = [[stdlib_math(module):diff(interface)]] (x [, n, prepend, append])

and for a rank-2 array:
y = [[stdlib_math(module):diff(interface)]] (x [, n, dim, prepend, append])

Status

Experimental.

Class

Pure function.

Arguments

x: The array to take a difference of. Shall be a real/integer and rank-1/rank-2 array. This argument is intent(in).

n: How many times to iteratively calculate the difference. Shall be an integer scalar. This argument is intent(in) and optional, and has value of 1 by default.

dim: The dimension of the input array along which to calculate the difference. Its value must be between 1 and rank(x). Shall be an integer scalar. This argument is intent(in) and optional and has a value of 1 by default.

prepend, append: Arrays to prepend or append to a along axis prior to performing the difference. The dimension and shape must match a except along axis. Shall be a real/integer and rank-1/rank-2 array. This argument is intent(in) and optional, which is no value by default.

Note:

  • The x, prepend and append arguments must have the same type, kind and rank.
  • If the value of n is less than or equal to 0 (which is not recommended), the return value of diff is x.
  • If the value of dim is not equal to 1 or 2 (which is not recommended), 1 will be used by the internal process of diff.

Result value

Returns the finite difference of the input array. Shall be a real/integer and rank-1/rank-2 array. When both prepend and append are not present, the result y has one fewer element than x alongside the dimension dim.

Example

{!example/math/example_diff.f90!}

meshgrid subroutine

Description

Computes a list of coordinate matrices from coordinate vectors.

For $n \geq 1$ coordinate vectors $(x_1, x_2, ..., x_n)$ of sizes $(s_1, s_2, ..., s_n)$, meshgrid computes $n$ coordinate matrices $(X_1, X_2, ..., X_n)$ with identical shape corresponding to the selected indexing:

  • Cartesian indexing (default behavior): the shape of the coordinate matrices is $(s_2, s_1, s_3, s_4, ... s_n)$.
  • matrix indexing: the shape of the coordinate matrices is $(s_1, s_2, s_3, s_4, ... s_n)$.

Syntax

For a 2D problem in Cartesian indexing: call [[stdlib_math(module):meshgrid(interface)]] (x, y, xm, ym)

For a 3D problem in Cartesian indexing: call [[stdlib_math(module):meshgrid(interface)]] (x, y, z, xm, ym, zm)

For a 3D problem in matrix indexing: call [[stdlib_math(module):meshgrid(interface)]] (x, y, z, xm, ym, zm, indexing="ij")

The subroutine can be called in n-dimensional situations, as long as n is inferior to the maximum allowed array rank.

Status

Experimental.

Class

Subroutine.

Arguments

For a n-dimensional problem, with n >= 1:

x1, x2, ..., xn: The coordinate vectors. Shall be real/integer and rank-1 arrays. These arguments are intent(in).

xm1, xm2, ..., xmn: The coordinate matrices. Shall be arrays of type real or integer of adequate shape:

  • for Cartesian indexing, the shape of the coordinate matrices must be [size(x2), size(x1), size(x3), ..., size(xn)].
  • for matrix indexing, the shape of the coordinate matrices must be [size(x1), size(x2), size(x3), ..., size(xn)].

These argument are intent(out).

indexing: the selected indexing. Shall be an integer equal to stdlib_meshgrid_xy for Cartesian indexing (default), or stdlib_meshgrid_ij for matrix indexing. stdlib_meshgrid_xy and stdlib_meshgrid_ij are public constants defined in the module. This argument is intent(in) and optional, and is equal to stdlib_meshgrid_xy by default.

Example

{!example/math/example_meshgrid.f90!}