title |
---|
sparse |
[TOC]
The stdlib_sparse
module provides derived types for standard sparse matrix data structures. It also provides math kernels such as sparse matrix-vector product and conversion between matrix types.
Experimental
The parent sparse_type
is as an abstract derived type holding the basic common meta data needed to define a sparse matrix, as well as shared APIs. All sparse matrix flavors are extended from the sparse_type
.
type, public, abstract :: sparse_type
integer :: nrows !! number of rows
integer :: ncols !! number of columns
integer :: nnz !! number of non-zero values
integer :: storage !! assumed storage symmetry
end type
The storage integer label should be assigned from the module's internal enumerator containing the following three enums:
enum, bind(C)
enumerator :: sparse_full !! Full Sparse matrix (no symmetry considerations)
enumerator :: sparse_lower !! Symmetric Sparse matrix with triangular inferior storage
enumerator :: sparse_upper !! Symmetric Sparse matrix with triangular supperior storage
end enum
In the following, all sparse kinds will be presented in two main flavors: a data-less type <matrix>_type
useful for topological graph operations. And real/complex valued types <matrix>_<kind>_type
containing the data
buffer for the matrix values. The following rectangular matrix will be used to showcase how each sparse matrix holds the data internally:
Experimental
The COO
, triplet or ijv
format defines all non-zero elements of the matrix by explicitly allocating the i,j
index and the value of the matrix. While some implementations use separate row
and col
arrays for the index, here we use a 2D array in order to promote fast memory acces to ij
.
type(COO_sp_type) :: COO
call COO%malloc(4,5,10)
COO%data(:) = real([9,-3,4,7,8,-1,8,4,5,6])
COO%index(1:2,1) = [1,1]
COO%index(1:2,2) = [1,5]
COO%index(1:2,3) = [2,1]
COO%index(1:2,4) = [2,2]
COO%index(1:2,5) = [3,2]
COO%index(1:2,6) = [3,3]
COO%index(1:2,7) = [3,4]
COO%index(1:2,8) = [4,1]
COO%index(1:2,9) = [4,3]
COO%index(1:2,10) = [4,4]
Experimental
The Compressed Sparse Row or Yale format CSR
stores the matrix structure by compressing the row indices with a counter pointer rowptr
enabling to know the first and last non-zero column index col
of the given row.
type(CSR_sp_type) :: CSR
call CSR%malloc(4,5,10)
CSR%data(:) = real([9,-3,4,7,8,-1,8,4,5,6])
CSR%col(:) = [1,5,1,2,2,3,4,1,3,4]
CSR%rowptr(:) = [1,3,5,8,11]
Experimental
The Compressed Sparse Colum CSC
is similar to the CSR
format but values are accesed first by column, thus an index counter is given by colptr
which enables to know the first and last non-zero row index of a given colum.
type(CSC_sp_type) :: CSC
call CSC%malloc(4,5,10)
CSC%data(:) = real([9,4,4,7,8,-1,5,8,6,-3])
CSC%row(:) = [1,2,4,2,3,3,4,3,4,1]
CSC%colptr(:) = [1,4,6,8,10,11]
Experimental
The ELL
format stores data in a dense matrix of
type(ELL_sp_type) :: ELL
call ELL%malloc(num_rows=4,num_cols=5,num_nz_row=3)
ELL%data(1,1:3) = real([9,-3,0])
ELL%data(2,1:3) = real([4,7,0])
ELL%data(3,1:3) = real([8,-1,8])
ELL%data(4,1:3) = real([4,5,6])
ELL%index(1,1:3) = [1,5,0]
ELL%index(2,1:3) = [1,2,0]
ELL%index(3,1:3) = [2,3,4]
ELL%index(4,1:3) = [1,3,4]
Experimental
The Sliced ELLPACK format SELLC
is a variation of the ELLPACK
format. This modification reduces the storage size compared to the ELLPACK
format but maintaining its efficient data access scheme. It can be seen as an intermediate format between CSR
and ELLPACK
. For more details read the reference
Experimental
Type-bound procedures to enable adding data in a sparse matrix.
call matrix%add(i,j,v)
or
call matrix%add(i(:),j(:),v(:,:))
i
: Shall be an integer value or rank-1 array. It is an intent(in)
argument.
j
: Shall be an integer value or rank-1 array. It is an intent(in)
argument.
v
: Shall be a real
or complex
value or rank-2 array. The type shall be in accordance to the declared sparse matrix object. It is an intent(in)
argument.
Experimental
Type-bound procedures to enable requesting data from a sparse matrix.
v = matrix%at(i,j)
i
: Shall be an integer value. It is an intent(in)
argument.
j
: Shall be an integer value. It is an intent(in)
argument.
v
: Shall be a real
or complex
value in accordance to the declared sparse matrix object. If the ij
tuple is within the sparse pattern, v
contains the value in the data buffer. If the ij
tuple is outside the sparse pattern, v
is equal 0
. If the ij
tuple is outside the matrix pattern (nrows,ncols)
, v
is NaN
.
{!example/linalg/example_sparse_data_accessors.f90!}
Experimental
Provide sparse matrix-vector product kernels for the current supported sparse matrix types.
$$y=\alpha*op(M)x+\betay$$
call
[[stdlib_sparse_spmv(module):spmv(interface)]] (matrix,vec_x,vec_y [,alpha,beta,op])
matrix
: Shall be a real
or complex
sparse type matrix. It is an intent(in)
argument.
vec_x
: Shall be a rank-1 or rank-2 array of real
or complex
type array. It is an intent(in)
argument.
vec_y
: Shall be a rank-1 or rank-2 array of real
or complex
type array. . It is an intent(inout)
argument.
alpha
, optional
: Shall be a scalar value of the same type as vec_x
. Default value alpha=1
. It is an intent(in)
argument.
beta
, optional
: Shall be a scalar value of the same type as vec_x
. Default value beta=0
. It is an intent(in)
argument.
op
, optional
: In-place operator identifier. Shall be a character(1)
argument. It can have any of the following values: N
: no transpose, T
: transpose, H
: hermitian or complex transpose. These values are provided as constants by the stdlib_sparse
module: sparse_op_none
, sparse_op_transpose
, sparse_op_hermitian
Experimental
This module provides facility functions for converting between storage formats.
call
[[stdlib_sparse_conversion(module):coo2ordered(interface)]] (coo[,sort_data])
COO
: Shall be any COO
type. The same object will be returned with the arrays reallocated to the correct size after removing duplicates. It is an intent(inout)
argument.
sort_data
, optional
: Shall be a logical
argument to determine whether data in the COO graph should be sorted while sorting the index array, default .false.
. It is an intent(in)
argument.
call
[[stdlib_sparse_conversion(module):from_ijv(interface)]] (sparse,row,col[,data,nrows,ncols,num_nz_rows,chunk])
sparse
: Shall be a COO
, CSR
, ELL
or SELLC
type. The graph object will be returned with a canonical shape after sorting and removing duplicates from the (row,col,data)
triplet. If the graph is COO_type
no data buffer is allowed. It is an intent(inout)
argument.
row
: rows index array. It is an intent(in)
argument.
col
: columns index array. It is an intent(in)
argument.
data
, optional
: real
or complex
data array. It is an intent(in)
argument.
nrows
, optional
: number of rows, if not given it will be computed from the row
array. It is an intent(in)
argument.
ncols
, optional
: number of columns, if not given it will be computed from the col
array. It is an intent(in)
argument.
num_nz_rows
, optional
: number of non zeros per row, only valid in the case of an ELL
matrix, by default it will computed from the largest row. It is an intent(in)
argument.
chunk
, optional
: chunk size, only valid in the case of a SELLC
matrix, by default it will be taken from the SELLC
default attribute chunk size. It is an intent(in)
argument.
{!example/linalg/example_sparse_from_ijv.f90!}
call
[[stdlib_sparse_conversion(module):diag(interface)]] (matrix,diagonal)
matrix
: Shall be a dense
, COO
, CSR
or ELL
type. It is an intent(in)
argument.
diagonal
: A rank-1 array of the same type as the matrix
. It is an intent(inout)
and allocatable
argument.
If the diagonal
array has not been previously allocated, the diag
subroutine will allocate it using the nrows
of the matrix
.
call
[[stdlib_sparse_conversion(module):dense2coo(interface)]] (dense,coo)
dense
: Shall be a rank-2 array of real
or complex
type. It is an intent(in)
argument.
coo
: Shall be a COO
type of real
or complex
type. It is an intent(out)
argument.
call
[[stdlib_sparse_conversion(module):coo2dense(interface)]] (coo,dense)
coo
: Shall be a COO
type of real
or complex
type. It is an intent(in)
argument.
dense
: Shall be a rank-2 array of real
or complex
type. It is an intent(out)
argument.
call
[[stdlib_sparse_conversion(module):coo2csr(interface)]] (coo,csr)
coo
: Shall be a COO
type of real
or complex
type. It is an intent(in)
argument.
csr
: Shall be a CSR
type of real
or complex
type. It is an intent(out)
argument.
call
[[stdlib_sparse_conversion(module):coo2csc(interface)]] (coo,csc)
coo
: Shall be a COO
type of real
or complex
type. It is an intent(in)
argument.
csc
: Shall be a CSC
type of real
or complex
type. It is an intent(out)
argument.
call
[[stdlib_sparse_conversion(module):csr2coo(interface)]] (csr,coo)
csr
: Shall be a CSR
type of real
or complex
type. It is an intent(in)
argument.
coo
: Shall be a COO
type of real
or complex
type. It is an intent(out)
argument.
call
[[stdlib_sparse_conversion(module):csr2sellc(interface)]] (csr,sellc[,chunk])
csr
: Shall be a CSR
type of real
or complex
type. It is an intent(in)
argument.
sellc
: Shall be a SELLC
type of real
or complex
type. It is an intent(out)
argument.
chunk
, optional
: chunk size for the Sliced ELLPACK format. It is an intent(in)
argument.
call
[[stdlib_sparse_conversion(module):csr2sellc(interface)]] (csr,ell[,num_nz_rows])
csr
: Shall be a CSR
type of real
or complex
type. It is an intent(in)
argument.
ell
: Shall be a ELL
type of real
or complex
type. It is an intent(out)
argument.
num_nz_rows
, optional
: number of non zeros per row. If not give, it will correspond to the size of the longest row in the CSR
matrix. It is an intent(in)
argument.
call
[[stdlib_sparse_conversion(module):csc2coo(interface)]] (csc,coo)
csc
: Shall be a CSC
type of real
or complex
type. It is an intent(in)
argument.
coo
: Shall be a COO
type of real
or complex
type. It is an intent(out)
argument.
{!example/linalg/example_sparse_spmv.f90!}