-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_with_positions_categorical.py
105 lines (70 loc) · 2.32 KB
/
train_with_positions_categorical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
"""
order integer sequences of length given by n_steps
add one-hot position indicator to each number
maybe it will help the network
"""
import pickle
import numpy as np
from keras.models import Model
from keras.layers import LSTM, Input
from keras.utils.np_utils import to_categorical
from PointerLSTM import PointerLSTM
#
n_steps = 5
x_file = 'data/x_{}.csv'.format( n_steps )
y_file = 'data/y_{}.csv'.format( n_steps )
split_at = 9000
batch_size = 100
hidden_size = 64
weights_file = 'model_weights/model_weights_with_positions_categorical_{}_steps_{}.hdf5'.format(
n_steps, hidden_size )
#
x = np.loadtxt( x_file, delimiter = ',', dtype = int )
y = np.loadtxt( y_file, delimiter = ',', dtype = int )
x = np.expand_dims( x, axis = 2 )
# prep position indicators
# look what I have become
# variable names a la Matlab
n = np.arange( n_steps )
k = to_categorical( n )
kk = np.tile( k, ( x.shape[0], 1 ))
kk = kk.reshape( -1, n_steps, n_steps )
xx = np.dstack(( x, kk ))
YY = []
for y_ in y:
YY.append(to_categorical(y_))
YY = np.asarray(YY)
x_train = xx[:split_at]
x_test = xx[split_at:]
y_test = y[split_at:]
YY_train = YY[:split_at]
YY_test = YY[split_at:]
assert( n_steps == x_train.shape[1] )
n_features = x_train.shape[2]
print( "sequence length is {}, {} features at each step.".format( n_steps, n_features ))
#
print( "building model..." )
main_input = Input( shape=( n_steps, n_features ), name='main_input' )
encoder = LSTM(output_dim = hidden_size, return_sequences = True, name="encoder")(main_input)
decoder = PointerLSTM(hidden_size, output_dim=hidden_size, name="decoder")(encoder)
model = Model( input=main_input, output=decoder )
print( "loading weights from {}...".format( weights_file ))
try:
model.load_weights( weights_file )
except IOError:
print( "no weights file, starting anew." )
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
print( 'training and saving model weights each epoch...' )
validation_data = ( x_test, YY_test )
while True:
history = model.fit( x_train, YY_train, nb_epoch = 1, batch_size = batch_size,
validation_data = validation_data )
p = model.predict( x_test )
for y_, p_ in zip( y_test, p )[:5]:
print "y_test:", y_
print "p: ", p_.argmax( axis = 1 )
print
model.save_weights( weights_file )